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a b s t r a c t

Subdivision Surface provides an efficientway to represent free-form surfaceswith arbitrary
topology. Loop subdivision is a subdivision scheme for triangular meshes, which is C2

continuous except at a finite number of extraordinary vertices with G1 continuous. In this
paper we propose the Truncated Hierarchical Loop Subdivision Surface (THLSS), which
generalizes truncated hierarchical B-splines to arbitrary topological triangular meshes.
THLSS basis functions are linearly independent, form a partition of unity, and are locally
refinable. THLSS also preserves the geometry during adaptive h-refinement and thus
inherits the surface continuity of Loop subdivision surface. Adaptive isogeometric analysis
is performedwith the THLSS basis functions on several complexmodelswith extraordinary
vertices to show the potential application of THLSS.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Isogeometric analysis (IGA) was originally introduced by Hughes et al. [1] and described in detail in [2]. With IGA,
traditional design-through-analysis procedures such as geometry clean-up, defeaturing, andmesh generation are simplified
or eliminated entirely. Additionally, the higher-order smoothness provides substantial gains to analysis in terms of accuracy
and robustness of finite element solutions [3–5]. However, a global geometric discretization, based on NURBS, is usually
not suitable as a basis for analysis. Many different methods have been developed in these years to define locally refinable
splines, such as the (Truncated) Hierarchical B-splines [6–8], the (Analysis-suitable) T-splines [9–12], the PHT-splines
[13–15], the LR B-splines [16,17] and the Modified T-splines [18]. Truncated hierarchical Catmull–Clark subdivision
(THCCS) [19,20] generalized Truncated Hierarchical B-splines [8] to control grids of arbitrary topology. THCCS provide a
method to define locally refinable splines on quadrilateral meshes with extraordinary nodes.

Recently locally refinable splines on triangular partitions also attract researchers’s interest because of the flexibility and
the popular using in classical finite element analysis of triangular partitions. Hierarchical bivariate splines on regular (type-I
and type-II) triangular partitions were introduced in [21] and applied to numerical solving PDEs. Later, Jüttler et al. [22]
generalized the truncated hierarchical B-splines [8] to hierarchies of spaces that are spanned by generating systems that
potentially possess linear dependencies, a special box splines defined on criss-cross grid called Zwart–Powell (ZP) elements
was discussed as an example. Speleers et al. [23,24] proposed hierarchical Powell–Sabin splines for isogeometric analysis
applications, where Powell–Sabin splines are C1 piecewise quadratic polynomials defined on a special refinement of any
given triangulation.

Loop subdivision [25] is a subdivision scheme for triangular meshes. The limit surface defined by Loop subdivision is C2

continuous except at a finite number of extraordinary vertices (an extraordinary vertex has other than six faces adjacent
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(a) Edge point rule. (b) Vertex point rule.

Fig. 1. Mask for Loop subdivision.

to it) where the surface is G1 continuous. Explicit Loop basis functions were explored by J. Stam [26] and have several
nice properties: linear independence, partition of unity and local support. There recently have been a few works on the
application of Loop subdivision in isogeometric analysis. Loop subdivision surfaces were used for describing the geometry
of shell and the displacement fields in thin-shell finite element analysis [27]. Extended Loop subdivision surfaces were used
in isogeometric analysis in [28], where Poisson equations with the Dirichlet boundary condition were considered and the
approximation properties of extended Loop basis functions were established.

In this paper we introduce the truncation hierarchical mechanism [8] into Loop subdivision surfaces, which are called
Truncated Hierarchical Loop Subdivision Surfaces (THLSS), to be adapted to triangular meshes with arbitrary topology and
support local refinement. THLSS preserve the exact geometry when adaptive h-refinement is performed and inherit the
surface continuity of Loop subdivision surfaces. THLSS basis functions are global linearly independent, form a partition of
unity and have local support.We applied THLSS basis functions in isogeometric analysis on several complex geometries. The
simulation results show potential wide application of the proposed method in integrating design and analysis. Through a
benchmark numerical experiment, we demonstrate its efficiencywith the comparison to the classical finite element analysis
piecewise linear elements.

The paper is organized as follows: Section 2 briefly reviews Loop subdivision scheme including Stam’s explicit basis
functions. Section 3 presents the detail of THLSS construction. Section 4 shows several numerical experiments with the
comparison to the FEA with linear elements and Loop basis functions. Section 5 is the conclusion and future work.

2. Loop subdivision surface

In this section, we briefly review Loop’s subdivision scheme and the explicit basis functions introduced by J. Stam [26].

2.1. Loop subdivision scheme

Loop subdivision scheme is an approximating subdivision scheme. Referring to Fig. 1, let xl and xr be the two wing
neighbor vertices of edge[xixj], then the new edge point added on this edge is defined as

ei,j =
3
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3
8
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1
8
xl +

1
8
xr .

And for a vertex xk0 at level kwith neighboring vertices xki , i = 1, 2, . . . , n, where n is the valence of vertex xk0. The old vertex
is updated to xk+1

0 according to

xk+1
0 = (1 − nα)xk0 + α(xk1 + xk2 + · · · + xkn),

whereα =
1
n [
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n ))2]. This linear relationship can be expressed by a so-called subdivisionmatrix. The repeated
global refinement generates a sequence of meshes M0, . . . , Mn, where M0 is the initial control grid, and n is the number of
subdivisions. As n goes to infinity, Mn converges to a limit surface. We call this limit surface as Loop subdivision surface.

2.2. Loop basis functions

An alternative way to obtain the limit surface takes advantage of the Stam’s basis functions [26]. These basis functions
are analogous to B-spline basis functions, whereas each mesh Ml is served as a control grid. Thus we can express the limit
surface Slimit by a mapping from the parametric domain to the physical domain,

Slimit(v, w) =

N l
i=1
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i , (1)
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