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a b s t r a c t

An algorithm suitable for analysis of convection problems in corrugated conduits has been
developed. The algorithm uses the immersed boundary conditions (IBC) concept to capture
the effects of corrugated walls. The field equations are discretized on a regular domain
surrounding the flow domain using Fourier expansions in the stream-wise direction
and Chebyshev expansions in the wall-normal direction. The boundary conditions are
expressed in the form of constraints and the spectrally accurate discretization of these
constraints is discussed. The solution is carried out using the fix flow rate constraint.
Discretization as well as a method for the direct inclusion of this constraint in the flow
solver is presented. Several tests are used to demonstrate the spectral accuracy of the
solution. The solution process relies on iterations with an efficient solver taking advantage
of the structure of the coefficient matrix used to solve the linear system. The limitations
of the algorithm are discussed and gains associated with the over-determined formulation
are presented.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Convective heat transfer occurs in many applications and, thus, determining its characteristics is of utmost importance.
The fundamental aspects of convection have been studied in idealized geometries for many decades, e.g. natural convection
between smooth parallel plates, using both theoretical and experimental approaches [1]. There are numerous case studies
focused on the applied aspects of convection and involving specialized geometries [2–8]. There is, however, a gap between
the fundamental and applied studies, and its elimination would yield practically important information about convection
in more complex geometries. One of the areas where the fundamental information is missing is the effect of surface
roughness/corrugations on natural andmixed convection, and on the onset of secondary states in buoyancy drivenmotions.
This particular issue becomes prominent inmicro-conduits where the roughness size cannot be reduced to a negligible level
using currently available manufacturing techniques [9–15].

Analysis of the effects of roughness on heat transfer processes must address the issue of modelling of the roughness
geometry. As there is an uncountable number of possible shapes, it appears that a general solution is not possible. Typical
approaches rely on the selection of the geometry of interest and construction of boundary fitted coordinates followed by a
solution of the field equations [9,16–18]. The prediction of the onset of secondary states requires a highly accurate solution of
the stationary state, but very few high-accuracy grid generationmethods are available, e.g. conformalmapping based on the
Schwartz–Christoffel transformation whose parameters can be determined with near spectral accuracy [19–21]. One alter-
native is offered by the domain transformation method, which relies on analytically mapping the irregular physical domain
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Fig. 1. Schematic diagram of the flow system.

to a rectangular computational domain. However, suchmappings are available only for a limited class of geometries [22,23].
The other alternative involves the immersed (or fictitious) boundaries concept, whose origin can be traced to the analysis
of moving boundary problems and the development of interface tracking methods [24]. In this class of problems, the grid is
fixedwhile the solution domain travels through this grid. The available algorithms rely either on surface or on volume track-
ing, e.g. VOF (Volume of Fluid), MAC (Marker and Cell) and Level Setmethods [25–30]. The standard form of these algorithms
relies on low-order spatial accuracy consistent with the diffused boundary locations resulting from the tracking procedures.

The immersed boundaries concept has re-emerged recently, resulting in its rapid development [31,32]. The common
limitation is the spatial accuracy, as most of these methods are based on either low-order finite-difference, finite-volume
or finite-element techniques [31–35]. The second, less known limitation is the use of the local fictitious forces required to
enforce the no-slip and no-penetration conditions. These forces locally affect the flow physics and this may lead to incorrect
estimates of derivatives of flow quantities, i.e. misrepresentation of the local wall shear. This problem is likely to be more
pronounced in the case of methods with high spatial accuracy.

The spectrally-accurate version of the immersed boundary concept, referred to as the Immersed Boundary Conditions
(IBC) method, was proposed in 1999 [36] for the solution of the Navier–Stokes equations and is still the only method which
guarantees spectral accuracy of the complete solution rather than just the spectral discretization of the field equations. This
method has been extended to two- and three-dimensional conduction problems [37,38] as well to conduction problems
with moving boundaries [39].

This work is focused on the extension of the IBC algorithm to non-isothermal conditions. Since the main goal of the anal-
ysis is to develop techniques for the analysis of roughness effects, we shall invoke the reduced geometrymodel in which the
geometry is projected onto a convenient reference functional space and elements of this space relevant for hydrodynamics
are sought. This leads to the analysis of sinusoidal grooves which represent the dominant terms in the geometry projection
onto the Fourier space. It has been demonstrated that this approach provides a general answer to the issue of roughness ef-
fects with accuracy sufficient formost applications. Section 2 provides a description of themodel problems used to illustrate
the algorithm. Section 3 discusses the discretization, with Section 3.1 focused on the discretization of the field equations,
Section 3.2 describing the discretization of the boundary conditions and Section 3.3 discussing the discretization of the flow
rate constraint. Section 4 describes the solution process, Section 5 is focused on the linear solvers and Section 6 discusses
the evaluation of the pressure field. Section 7 discusses the performance of the algorithmwhile Section 8 describes the gains
associated with the overdetermined formulation. Section 9 provides a short summary of the main conclusions.

2. Problem Formulation

Consider channel formed by two horizontal corrugated plates (see Fig. 1) whose geometries have the form
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where the subscripts L and U refer to the lower and upper plate, respectively, C∗

L and C∗

U are the amplitudes of the
corrugations at the lower and upper plates, respectively, Ω∗

C stands for the phase shift between them, α∗ is their wave
number and stars denote dimensional quantities. The channel is periodic with the wavelength λ∗

= 2π/α∗ and extends
to ±∞ in the x-direction with the mean distance between the plates 2h∗. The gravitational acceleration g∗ is acting
in the negative y-direction. The steady, incompressible flow of a Newtonian fluid is driven in the positive x-direction
by an externally imposed pressure gradient. The fluid has thermal conductivity k∗, specific heat c∗, thermal diffusivity
κ∗

= k∗/ρ∗c∗, kinematic viscosity ν∗, dynamic viscosityµ∗, thermal expansion coefficient Γ ∗ and variations of the density
ρ∗ follow the Boussinesq approximation. All material properties are evaluated at the reference temperature.
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