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a b s t r a c t

We present the analysis of an h version Finite Element Method for the approximation of
the solution to convection–diffusion problems. The method uses piece-wise polynomials
of degree p ≥ 1, defined on an exponentially graded mesh, optimally constructed for the
approximation of exponential layers. We consider a model convection–diffusion problem,
posed on the unit square and establish robust, optimal convergence rates in the energy and
in the maximum norm. We also present the results of some numerical computations that
illustrate our theoretical findings and compare the proposed method with others found in
the literature.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Singularly perturbed problems have been studied for a number of decades (see [1,2] and the references therein) as they
arise in a variety of applications. One family of such problems are convection-dominated equations, in which the following
two difficulties arise: stability of discretizations and the presence of boundary layers in the solution. In the context of the
Finite Element Method (FEM), the robust approximation of boundary layers requires either the use of the h version on
non-uniform, layer adapted meshes (such as the Shishkin [3] or Bakhvalov [4] mesh), or the use of the high order p and hp
versions on appropriately designed (variable) meshes [5]. In both cases, the a priori knowledge of the position of the layers is
taken into account andmesh-degree combinations can be chosen for which uniform error estimates can be established (see,
e.g., [6]). Among the various layer adapted meshes that have been proposed in the literature over the years, one finds the
non-uniform, layer adapted, exponentially graded mesh, which was constructed by optimizing certain upper bounds on the
error (see [7] for details). The finite element analysis on this mesh appears in [8] where robust, optimal rates of convergence
were proved for one-dimensional reaction–diffusion and convection–diffusion problems. The purpose of this article is to
extend the results of [8] to a two-dimensional convection–diffusion problem posed on a square, under sufficient regularity
assumptions (which exclude the presence of corner singularities in the solution). The proposed method not only yields the
optimal rate of convergence, but it does so without the assumption ε ≤ CN−1, as is done in most other methods; here ε is
the singular perturbation parameter, N is the number of meshpoints and C is a positive constant independent of ε and N .
In addition, in numerical tests it outperforms the equally optimal Bakhvalov–Shishkin mesh (see [8] for one-dimensional
results and Section 5 ahead).
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The rest of the paper is organized as follows: in Section 2 we present the model problem and its regularity. The
discretization using the exponentially graded mesh is presented in Section 3 and in Section 4 we present our main result of
uniform, optimal convergence. Section 5 shows the results of some numerical computations that illustrate the theoretical
findings and Section 6 gives our conclusions.

With Ω ⊂ R2 a bounded open set with Lipschitz boundary ∂Ω and measure |Ω|, we will denote by Ck(Ω) the space of
continuous functions on Ω with continuous derivatives up to order k and by Ck,α (Ω) we will denote the space of functions
whose derivatives up to order k are Hölder continuous with exponent α. We will use the usual Sobolev spaces W k,m(Ω) of
functions on Ω with 0, 1, 2, . . . , k generalized derivatives in Lm (Ω), equipped with the norm and seminorm ∥·∥k,m,Ω and
|·|k,m,Ω , respectively. Whenm = 2, wewill writeHk (Ω) instead ofW k,2 (Ω), and for the norm and seminorm, wewill write
∥·∥k,Ω and |·|k,Ω , respectively. We will also use the space

H1
0 (Ω) =


u ∈ H1 (Ω) : u|∂Ω = 0


.

The norm of the space L∞(Ω) of essentially bounded functions is denoted by ∥ · ∥∞,Ω . Finally, the notation ‘‘a . b’’ means
‘‘a ≤ Cb’’ with C being a generic positive constant, independent of any discretization or singular perturbation parameters.

2. The model problem and its regularity

We consider the following convection–diffusion boundary value problem (BVP): Find u ∈ C2 (Ω) ∩ C

Ω

such that

−ε1u + bT
∇u + cu = f in Ω = (0, 1)2, (1a)

u = 0 on ∂Ω, (1b)

where

bT
= [b1(x, y), b2(x, y)] ≥ [β1, β2] > 0 on Ω,

ε ∈ (0, 1] is a small parameter, b1, b2, c, f are sufficiently smooth functions and β1, β2 are constants. We will assume, as
usual, that

c −
1
2
div b > 0, c ≥ 0 on Ω

and our problem will have a unique (weak) solution u ∈ H1
0 (Ω) for all f ∈ L2 (Ω).

The analysis will be performed under the assumption that the solution does not contain any corner singularities. This will
happen if certain compatibility conditions are imposed on the data (see, e.g., [9]). Under such an assumption, the solution u
will admit a decomposition (see, e.g., [6]) into a smooth part and a boundary layer part. Bounds on the derivatives of each
part are available only in certain cases (see, e.g., [10]). To avoid corner singularities and focus on the boundary layers, we
will make the following assumption:

Assumption 1. The BVP (1) has a classical solution u ∈ Cq+1,α

Ω

, q ≥ 2 for some α ∈ (0, 1), which can be decomposed as

u = S + E1 + E2 + E12, (A1)

where for all (x, y) ∈ Ω there holds ∂ i+jS
∂xi∂yj

(x, y)
 . 1, (A2) ∂ i+jE1

∂xi∂yj
(x, y)

 . ε−ie−β1(1−x)/ε, (A3) ∂ i+jE2
∂xi∂yj

(x, y)
 . ε−je−β2(1−y)/ε (A4)

and ∂ i+jE12
∂xi∂yj

(x, y)
 . ε−(i+j)e−(β1(1−x)+β2(1−y))/ε, (A5)

for 0 ≤ i + j ≤ q.

The above was proven for the case q = 2, Ω = (0, 1)2 in [11] and the precise compatibility of the data was given. See
also [10] for a similar decomposition that includes corner singularities. Here, we assume that our problem has a unique
solution that satisfies Assumption 1 for q ≥ 2.
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