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a b s t r a c t

The heterogeneous Helmholtz equation is used in geophysics to model the propagation of
a time harmonic wave through the earth. Processing seismic data (inversion, migration...)
involvesmany solutions of theHelmholtz equation, so that an efficient numerical algorithm
is required. It turns out that numerical approximation of waves becomes very demanding
at high frequencies because of the pollution effect. In the case of homogeneous media high
order methods can reduce the pollution effect significantly, enabling the approximation of
high frequency waves. However, they fail to handle fine-scale heterogeneities and cannot
be applied as-is to heterogeneous media. In this paper, we show that if the propagation
medium is properly approximated using amultiscale strategy, high ordermethods are able
to capture subcell variations of the medium. Furthermore, focusing on a one dimensional
model problem enables us to prove frequency explicit asymptotic error estimates, showing
the superiority of high order methods. Numerical experiments validate our approach and
comfort our theoretical results.

© 2016 Elsevier Ltd. All rights reserved.

0. Introduction

Numerical approximation of high frequency waves is a challenging problem: because of the pollution effect, the mesh
needs to be drastically refined. In the context of Galerkinmethods the pollution effect is the fact that if the number of degrees
of freedom per wavelength is fixed, the error of the best approximation of the discrete space remains bounded, while the
numerical solution is diverging from the true solution when the frequency is increasing. This is due to the fact that the
Helmholtz operator is not coercive, so that quasi-optimality of the discrete scheme is not ensured for arbitrary meshes.

The pollution effect has been extensively studied in the case of homogeneous media. In particular, it is known that even
if it is possible to design pollution-free schemes in one dimension, it is not the case in two and three dimensions as shown
by Babuška and Sauter in [1].

Frequency explicit error estimates have been derived: the finite element error is bounded explicitly in terms of the
frequency ω, the mesh step h and the order of discretization p. Two types of results are available. First, if the mesh is fine
enough, the finite element solution is quasi-optimal. This results are called asymptotic error estimates. The second type of
results are the so-called pre-asymptotic error-estimates. They give an optimal condition on the mesh to bound the error
independently of the frequency.

For the case of one dimensional homogeneousmedia, optimal pre-asymptotic error-estimates for Lagrangian polynomial
discretizations have been established by Babuška and Ihlenburg in the pair of papers [2,3]. It is shown that the error can be
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decomposed into two different factors. The best approximation error, of order ωphp, and the phase lag, of order ω2p+1h2p. In
particular, the error is bounded independently of the frequency, if h ≃ ω−1−1/(2p). The pollution effect is present for all p,
since the mesh step must satisfy h ≃ ω−1−1/(2p)

≪ ω−1. However, this effect is reduced for high order methods, since the
exponent on ω gets closer to one as p is increasing.

Asymptotic error estimates are available in two and three dimensions. Melenk and Sauter showed in [4,5] that finite
element schemes are stable and that the finite element solution is quasi-optimal under the condition that ωp+1hp < C .

In this paper, we focus on the case of highly heterogeneous media. Classical high order discretizations fail to handle such
propagation media, because they are not able to see the fine scales of the velocity parameter. Indeed, they are build upon
coarser meshes than low order methods. Therefore, if the velocity parameter is taken to be constant in each cell (through
averaging, or local homogenization strategies), fine scale information is (at least partially) lost. Furthermore, restricting the
mesh steps so that the velocity parameter is constant inside each cell usually higher the computational cost too much if the
medium is highly heterogeneous.

We propose to overcome this difficulty with a Multiscale Medium Approximation method (MMAm). The velocity
parameter is not assumed to be constant on each cell, but on a submesh of each cell. If the submeshes are designed properly,
the MMAm is equivalent to a quadrature formula, adapted to the medium. In particular, we show that this methodology
has roughly the same computational cost as the classical finite element method. The method was presented in [6] for a
two-dimensional Helmholtz problem and a pre-asymptotic error estimate has been demonstrated for linear elements.

The aim of this paper is to extend the analysis of theMMAm to higher order discretizations. Though practical applications
are 3D, we focus on a one dimensional model problem. This choice enables us to simplify the proofs, but most of our results
are extensible to higher dimensions.

First, we show that the heterogeneousHelmholtz problem iswell-posed and derive frequency-explicit stability estimates
with respect to the right hand side, and with respect to variations of the velocity parameter, justifying the use of medium
approximation. Those results are obtained assuming the velocity parameter is monotonous and that the propagation
medium is surrounded by first order absorbing boundary conditions. However, these hypotheses are not mandatory to
discretize the problem.

Second, we derive asymptotic error estimates for the MMAm. Even if the solution can be rough inside each cell because
of velocity jumps, we are able to extend the asymptotic error estimates obtained in [4] for 1 ≤ p ≤ 3.

Third, we investigate numerically the stability of the scheme when the frequency is increasing to figure out optimal
meshing conditions. We show that in simple media, the optimal homogeneous pre-asymptotic error estimates is still valid.
However, in more complex cases, it looks like the condition h ≃ ω−1−1/(2p) is not sufficient anymore.

Finally, we fix the frequency and compare different orders of discretization to achieve a given precision. We are able
to conclude that high order methods are interesting: in our examples, p = 4 discretizations always yield a smaller linear
system than lower order discretizations for the same precision.

The paper is organized as follows: in Section 1,we define ourmodel problem and introduce the notationswewill be using
in the remaining. Section 2 is devoted to the analysis of the continuous problem.We analyse theMMAm in Sections 3–5 and
numerical experiments are presented in Sections 6 and 7.

1. Settings

We consider the Helmholtz equation set in the heterogeneous one dimensional domain (0, Z)with absorbing boundary
conditions

−
ω2

c2(z)
u(z)− u′′(z) = f (z), z ∈ (0, Z),

−u′(0)−
iω
c(0)

u(0) = 0,

u′(Z)−
iω
c(Z)

u(Z) = 0,

(1)

where f is the load term, ω is the pulsation and c is the velocity parameter. Since we especially focus on the high frequency
case, we will consider real frequencies ω ≥ 1.

For the sake of simplicity, we restrict ourself to the case where c is piecewise constant. We could also have considered
piecewise smooth parameters. We do not because we consider that the most difficult part of the analysis is the jumps of the
parameter, which are considered herein. We will also assume that all the parameters we consider are uniformly bounded
above and below by two constants. This is a reasonable assumption, which can be justified in geophysics by the properties of
rocks. We also introduce two additional hypothesis which are required for our theoretical analysis. We will assume that the
length of the thinnest layer is bounded below and that the velocity parameter is monotonous. Remark that the monotonous
hypothesis is still valid in a lot of geophysical application, since the wave velocity is usually increasing with depth. Our
assumptions on c are summarized in Definition 1.
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