
Computers and Mathematics with Applications ( ) –

Contents lists available at ScienceDirect

Computers and Mathematics with Applications

journal homepage: www.elsevier.com/locate/camwa

A numerical study of compact approximations based on flat
integrated radial basis functions for second-order
differential equations
C.M.T. Tien, N. Mai-Duy, C.-D. Tran, T. Tran-Cong ∗

Computational Engineering and Science Research Centre, Faculty of Health, Engineering and Sciences, The University of Southern
Queensland, 487/521-535 West Street, Toowoomba, Queensland 4350, Australia

a r t i c l e i n f o

Article history:
Received 1 September 2015
Received in revised form 26 August 2016
Accepted 1 September 2016
Available online xxxx

Keywords:
RBF
Integrated RBF
Shape parameter
Ill-conditioning
ODE
PDE

a b s t r a c t

In this paper, we propose a simple but effective preconditioning technique to improve
the numerical stability of Integrated Radial Basis Function (IRBF) methods. The proposed
preconditioner is simply the inverse of a well-conditioned matrix that is constructed
using non-flat IRBFs. Much larger values of the free shape parameter of IRBFs can thus be
employed and better accuracy for smooth solution problems can be achieved. Furthermore,
to improve the accuracy of local IRBFmethods,we propose a new stencil, namely Combined
Compact IRBF (CCIRBF), in which (i) the starting point is the fourth-order derivative; and
(ii) nodal values of first- and second-order derivatives at side nodes of the stencil are
included in the computation of first- and second-order derivatives at the middle node in a
naturalway. The proposed stencil can be employed in uniform/nonuniformCartesian grids.
The preconditioning technique in combination with the CCIRBF scheme employed with
large values of the shape parameter are tested with elliptic equations and then applied to
simulate several fluid flow problems governed by Poisson, Burgers, convection–diffusion,
and Navier–Stokes equations. Highly accurate and stable solutions are obtained. In some
cases, the preconditioned schemes are shown to be several orders of magnitude more
accurate than those without preconditioning.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

During the last three decades, Radial Basis Function (RBFs) have found increasinglywidespread use for numerical solution
to the Partial Differential Equation (PDE) systems. Hardy [1,2] devised Multi-Quadric (MQ) RBF schemes for scattered data
fitting and general multi-dimensional data interpolation problems in geo-physical engineering. Buhmann [3] and Madych
and Nelson [4] showed that MQ-RBF approximation methods converge exponentially as the density of RBFs and their shape
parameters increase. Kansa first implemented MQ-RBFs (here referred to as Direct/Differential RBF or DRBF methods) for
solving PDEs [5,6]. Since then, DRBFmethods have been increasingly used for the solution of elliptic, parabolic andhyperbolic
PDEs which govern many engineering problems. In [7–11], practitioners demonstrated that the elliptic PDE solutions using
DRBFs converge much faster than those based on polynomial approximations. Mai-Duy and Tran-Cong proposed the idea of
using Indirect/Integrated RBFs (IRBFs) for the solution of PDEs [12,13]. Numerical results in [12–19] showed that the integral
approach ismore accurate than the differential approach. In theseworks, the authors claimed that because the integration is

∗ Corresponding author.
E-mail addresses: camminhtri.tien@usq.edu.au (C.M.T. Tien), nam.mai-duy@usq.edu.au (N. Mai-Duy), canh-dung.tran@usq.edu.au (C.-D. Tran),

thanh.tran-cong@usq.edu.au (T. Tran-Cong).

http://dx.doi.org/10.1016/j.camwa.2016.09.001
0898-1221/© 2016 Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.camwa.2016.09.001
http://www.elsevier.com/locate/camwa
http://www.elsevier.com/locate/camwa
mailto:camminhtri.tien@usq.edu.au
mailto:nam.mai-duy@usq.edu.au
mailto:canh-dung.tran@usq.edu.au
mailto:thanh.tran-cong@usq.edu.au
http://dx.doi.org/10.1016/j.camwa.2016.09.001


2 C.M.T. Tien et al. / Computers and Mathematics with Applications ( ) –

a smoothing operation and the integrated basis functions are of higher orders, the integral approach has the ability to yield
a faster converging solution. In DRBF and IRBF methods, the original unknowns are the RBF coefficients. However, like the
Differential Quadrature (DQ) method, these unknowns can be expressed in terms of nodal values of the dependent variable
and the calculation is then conducted in the physical space [15].

However, despite the success of RBFmethods inmany scientific and engineering applications, their accuracy is dependent
on a user defined parameter, namely the RBF width or the shape parameter. In this work, it is denoted by β . Numerical
experiments indicated that the optimal value of β depends on the function to be interpolated, the configuration of nodal
points, the RBF type, and the machine precision [3,4,9,20–23]. The matrix condition of the RBF method grows exponentially
with the RBF width. For many problems, e.g. those having smooth solutions, the optimal value of the RBF width is known to
be normally large however the corresponding coefficient matrix becomes ill-conditioned. An on-going problem involving
the use of RBFs is how to choose the optimal value or even a consistently ‘‘good’’ value of β , which has received a great deal
of attention of many researchers. Rippa [21] presented a leave-one-out cross-validation scheme for optimising the shape
parameter. For smooth functions, it was shown that without round-off error the highest accuracy for a given number of
nodal points is regularly achieved when the RBFs become increasingly flat [8]. Theoretical and computational aspects of
increasingly flat RBF interpolations were discussed in [24]. Fornberg andWright [11] proposed the Contour-Padé algorithm
which can stably compute the whole region of the shape parameter on the complex plane. Many different approaches to
enhance the stability of DRBF methods have been proposed, for example [23,25–32] and their references therein. For IRBF
approaches, Sarra [16] studied the case of global flat IRBFs. It was observed that the even-order IRBFs are generally most
accurate and most poorly conditioned for large values of the shape parameter β . Additionally, numerical results in [15,16]
showed that the use of higher-order IRBFs can lead to better accuracy. Further discussions about RBF can be found in [33–35]
and references therein.

Motivated by the aforementioned works, this paper proposes (i) an easy-to-implement but effective preconditioning
technique for Compact IRBF (CIRBF) schemes to alleviate ill-condition problems arising from using large values of β; and
(ii) a Combined Compact IRBF (CCIRBF) approximation scheme using high-order IRBFs to enhance the solution accuracy,
especially in the large value range of β . Unlike compact schemes previously proposed in [19,36–38], a preconditioning
technique is employed here. The present preconditioned CCIRBF scheme is able to stably compute second-order PDE
problemswithmuch larger values of β . We derive expressions for evaluation of first- and second-order derivative operators
for solving PDE problems and demonstrate the stability and accuracy of the new scheme through various numerical
experiments. It should be emphasised that a mesh-free property of RBFs allows lengths between nodes in the stencil to be
different. It will be shown that a high level of accuracy is still achieved when CCIRBF stencils are applied to problems with
curved boundaries. The strength of RBF methods lies in their ability to deal with scattered data. In the present work, this
strength is exploited in the context of Cartesian grid discretisations. It is noted that creating a Cartesian grid is generally
much more efficient than creating a finite-element mesh, particularly for domains of non-rectangular shapes. Unlike
RBF-DQ methods, our proposed approximations are compact, which helps achieve a high level of accuracy (e.g. avoid the
loss of information in the approximation near the curved boundary).

The structure of this paper is organised as follows. Section 2 numerically discusses the condition number of IRBFs over
a wide range of β . To enhance the accuracy, a new approximation scheme, CCIRBF, is proposed in Section 3. Following
this, a simple preconditioning technique is proposed in Section 4 to retain the accuracy of the CCIRBF when working in the
large value range of β . Numerical examples in which the CCIRBF results are compared with some other solutions, where
appropriate, are presented in Section 5. Finally, some concluding remarks are given in Section 6.

2. Numerical observations on condition numbers of IRBFs

Several IRBF approximation schemes were previously reported in [12,19,37,38] and they are summarised here for
convenience. In IRBF approaches, the MQ function is usually chosen as the basis function

Gi(x) =


(x − ci)2 + a2i , (1)

where ci and ai are the centre and the width of the ith MQ, respectively. On a stencil, the set of nodal points is taken to be
the same as the set of MQ centres. The MQ width is defined as ai = βhi, where β is a positive scalar (the shape parameter)
and hi is the distance between the ith node and its closest neighbour.

For second-order PDEs, the integral approach normally starts with the decomposition of the second-order derivatives of
a variable, u, into RBFs

d2u(η)

dη2
=

m
i=1

wiGi(η), (2)

where {Gi(η)}mi=1 is the set of RBFs; and {wi}
m
i=1 is the set of weights/coefficients to be found. Approximate representations

for the first-order derivatives and the functions itself are then obtained through the integration processes
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