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a b s t r a c t

This paper is concerned with traveling wave solutions of a nonlocal dispersal Suscepti-
ble–Infective–Removal–Healing (for short SIRH) model with relapse. It is found that the
existence and nonexistence of traveling waves of the system are not only determined by
the criticalwave speed c∗, but also by the basic reproduction numberR0 of the correspond-
ing systemof ordinary differential equations.More precisely,weuse Schauder’s fixed-point
theorem to obtain the existence of traveling waves for R0 > 1 and c > c∗, and the nonex-
istence of traveling waves for R0 > 1 and 0 < c < c∗. Some numerical simulations and
discussions are also provided to illustrate our analytical results.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

As we know, several epidemic infectious brought big disasters in history. At the end of the fifteenth century, smallpox
attacked the American continent and Amerindian are nearly extinct. In 1937, the black death broke out in Sicily and then
swept the whole of Europe in three years. In 2002, SARS broke out in east Asia and quickly spread to southeast Asia and
North America. It is interesting to study how such infectious diseases spread from one location to other areas [1]. In 2012,
Wang et al. [2] have considered the following SIR disease outbreak model with the standard incidence

∂S
∂t

= d11S −
βSI
S + I

,

∂ I
∂t

= d21I +
βSI
S + I

− γ I,

∂R
∂t

= d31R + γ I.

(1.1)

Based on that of Wang and Wu [3] and several earlier studies [4–6], they showed a threshold condition for the existence
and nonexistence of traveling waves. Then, Wang et al. [7] have extended their results and methods to the following
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Fig. 1. Transfer diagram for the SIRH model.

three-dimensional diffusive disease model

∂S
∂t

= d11S −
βSI

S + I + R
,

∂ I
∂t

= d21I +
βSI

S + I + R
− (γ + δ) I,

∂R
∂t

= d31R + γ I.

(1.2)

As we know that reaction–diffusion equations have been used to describe a variety of phenomena in epidemiology and
spatial ecology. However, nonlocal dispersal is better to describe the long range process than the random diffusion in many
areas, such as materials science, phase transition, ecology, genetics, neurology and epidemiology. The study of traveling
waves of nonlocal dispersal epidemic models have attracted much attention. Li et al. [8] and Yang et al. [9] considered
traveling waves of nonlocal dispersal SIR models without the vital dynamics, which have rapid outbreak patterns and can
only be used tomodel the fast diseases. Li et al. [10] studied the existence, nonexistence andminimalwave speed of traveling
waves of a nonlocal dispersal delayed SIRmodelwith constant external supplies andHolling-II incidence rate. Yang et al. [11]
considered travelingwave solutions of a nonlocal dispersal SIR epidemicmodel. One also can see [12–22] for travelingwaves
of nonlocal dispersal equations and [23,24] for other development of epidemic models.

Note that the known results for traveling waves of the epidemic model do not consider the relapse to the disease. The
current paper is concerned with the following nonlocal dispersal SIRH model:

∂S(x, t)
∂t

= d[(J ∗ S)(x, t)− S(x, t)] +Λ− µS(x, t)−
βS(x, t)I(x, t)

S(x, t)+ I(x, t)+ R(x, t)
,

∂ I(x, t)
∂t

= d[(J ∗ I)(x, t)− I(x, t)] +
βS(x, t)I(x, t)

S(x, t)+ I(x, t)+ R(x, t)
+ ρR(x, t)− (µ+ η1 + φ)I(x, t),

∂R(x, t)
∂t

= d[(J ∗ R)(x, t)− R(x, t)] + φI(x, t)− ρR(x, t)− (µ+ η2 + ω)R(x, t),

∂H(x, t)
∂t

= ωR(x, t)− µH(x, t).

(1.3)

The transfer diagram is shown in Fig. 1.
Here, S, I and R denote the sizes of the susceptible, infected and removed individuals respectively, while H denotes the

healing individuals who will not be infected again. β denotes the per-capita effective contact rate (transmission rate), that
is, βSI

S+I+R denotes the rate of transitions from S to I , the result of the frequency-dependent interactions between individuals
in the classes S and I , µ denotes the natural mortality rate, ρ denotes the rate of relapse, φ denotes the per-capita recovery
(treatment) rate,ω denotes the permanent cure rate andΛ denotes the total recruitment rate into this homogeneous social
mixing community. From the last equation of the system (1.3), we can see that H is only related to R. Hence, we only need
to study the following system:
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βS(x, t)I(x, t)

S(x, t)+ I(x, t)+ R(x, t)
,

∂ I(x, t)
∂t

= d[(J ∗ I)(x, t)− I(x, t)] +
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S(x, t)+ I(x, t)+ R(x, t)
+ ρR(x, t)− (µ+ η1 + φ)I(x, t),

∂R(x, t)
∂t

= d[(J ∗ R)(x, t)− R(x, t)] + φI(x, t)− ρR(x, t)− (µ+ η2 + ω)R(x, t).

(1.4)

where J ∗ S(x, t) =


R J(x − y)S(y, t)dy is the rate at which the susceptible individuals are arriving at position x from all
other places, and −S(x, t) = −


R J(x− y)S(x, t)dy is the rate at which they are leaving location x to travel to all other sites,

where J(x− y) is thought of as the probability distribution of jumping from location y to location x. Thus, J ∗ S(x, t)− S(x, t)
describes that the rate of susceptible individuals at position x at time t depends on the influence of neighboring S(x, t)
at all other positions y. Simultaneously, J ∗ I(x, t) − I(x, t) and J ∗ R(x, t) − R(x, t) describe that the rate of infected and
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