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a b s t r a c t

In this paper, we study a generalized Choquard equation

−1u + V (x)u =


RN

Q (y)F(u(y))
|x − y|µ

dy

Q (x)f (u), u ∈ H1(RN),

where 0 < µ < N , V and Q are linear and nonlinear potentials, and F is the primitive
function of f . When the potentials are periodic and f is odd or even, we find infinitelymany
geometrically distinct solutions using the method of Nehari manifold and index theory.
When the potentials are generalized asymptotically periodic, we show the existence of
ground states by means of the method of Nehari manifold and concentration compactness
principle.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction and statement of the main result

The Choquard equation

−∆u + u =


R3

|u(y)|2

|x − y|
dy


u, u ∈ H1(R3), (1.1)

which was proposed by Choquard in 1976, and can be described as an approximation to Hartree–Fock theory of a one-
component plasma, see [1]. It was also proposed by Penrose in [2] as amodel for the self-gravitational collapse of a quantum
mechanicalwave function. In this context, problem (1.1) is usually called the nonlinear Schrödinger–Newton equation. In [1],
Lieb proved the existence and uniqueness of a minimizer to problem (1.1) by using symmetric decreasing rearrangement
inequalities. Later, in [3], Lions showed the existence of infinitely many radially symmetric solutions of (1.1). Further results
for related problems we refer to [4–8] and references therein.

In [9], Ma and Zhao considered the generalized Choquard equation

−∆u + u =


RN

|u(y)|p

|x − y|µ
dy


|u|p−2u, u ∈ H1(RN), (1.2)
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for p ≥ 2 and N ≥ 3. Under the condition that a certain set of real numbers N, µ, and p is nonempty, they proved
that every positive solution of (1.2) is radially symmetric and monotone decreasing about some point. Under the same
assumption, Cingolani, Clapp and Secchi [10] obtained some existence and multiplicity results in the electromagnetic
case, and established the regularity and some decay at infinity of ground states for (1.2). Moroz and Van Schaftingen [11]
eliminated this restriction and they showed the regularity, positivity and radial symmetry of ground states in the optimal
range of parameters. Later, Clapp and Salazar [12] considered Eq. (1.2)with the linear potential satisfying a certain symmetry
assumptions on unbounded domainΩ and some decay conditions at infinity, and they obtained the existence of a positive
solution andmultiple sign changing solutions. Moroz and Van Schaftingen [13] treated (1.2) with general nonlinearity in the
spirit of Berestycki and Lions and proved the existence of ground states. On the other hand, some people have studied the
semi-classic states, and there are many results about the existence and concentration of solutions for (1.2). See [4,5,14–17].
Recently, Alves and Yang [17] considered Eq. (1.2) with general potentials and nonlinearity that

− ϵ2∆u + V (x)u = ϵµ−N


RN

Q (y)F(u(y))
|x − y|µ

dy

Q (x)f (u), u ∈ H1(RN). (1.3)

Under suitable assumptions of V , Q , and f , they established a new concentration behavior of solutions by variational
methods.

For the Schrödinger equation

−∆u + V (x)u = f (x, u), u ∈ H1(RN), (1.4)

there aremany results under various conditions of V and f . When V and f are periodic in x, and f satisfies a certainmonotone
condition and superquadratic condition in u, based on the method of Nehari manifold Szulkin andWeth [18,19] showed the
existence of ground states and the multiplicity of geometrically distinct solutions.

Bymotivation of these works [17–19], we are interested in the existence andmultiplicity of solutions for the generalized
Choquard equation

−∆u + V (x)u =


RN

Q (y)F(u(y))
|x − y|µ

dy

Q (x)f (u), u ∈ H1(RN), (1.5)

where V ,Q and f are continuous real functions and F is the primitive function of f . To the best of our knowledge, there is
no result about geometrically distinct solutions, and we shall find infinitely many geometrically distinct solutions for (1.5)
with periodic potentials. In addition, we also consider the existence of ground states for (1.5) in which the potentials are
generalized asymptotically periodic.

For the potentials, assume that:
(VQ1) V ,Q ∈ C(RN) ∩ L∞(RN), infRN V > 0 and infRN Q > 0.

For the nonlinearity f , suppose that f ∈ C(R) and satisfies the following conditions:

(H1) |f (s)| ≤ a(|s|q1−1
+ |s|q2−1), for some a > 0 and 2 −

µ

N < q1 ≤ q2 < 2∗

2 (2 −
µ

N ),
(H2) s → f (s) is increasing on (−∞, 0) and (0,+∞),

(H3) F(s)
|s| → +∞ as |s| → +∞, where F(s) =

 s
0 f (t)dt .

Firstly, we consider the periodic case:
(VQ2) V and Q are 1-periodic in each component xj with x = (x1, x2, . . . , xN),

Let ⋆ be the action of ZN on H1(RN) given by

(k ⋆ u)(x) := u(x − k), k ∈ ZN .

From (VQ2) it follows that if u0 is a solution of (1.5), then so is k ⋆ u0 for all k ∈ ZN . Set

O(u0) := {k ⋆ u0 : k ∈ ZN
}.

O(u0) is called the orbit of u0 with respect to the action of ZN . Two solutions u1, u2 of (1.5) are said to be geometrically
distinct if O(u1) ≠ O(u2).

Theorem 1.1. Let (VQ1), (VQ2) and (H1)–(H3) hold. If f is odd or even in u, then the problem (1.5) admits infinitely many pairs
±u of geometrically distinct solutions.

Below we consider the asymptotically periodic case. Let F be the class of functions h ∈ L∞(RN) ∩ C(RN) such that, for
every ϵ > 0 the set {x ∈ RN

: |h(x)| ≥ ϵ} has finite Lebesgue measure.
(VQ3) there exist a constant b > 0 and functions Vp,Qp ∈ L∞(RN), 1-periodic in xi, 1 ≤ i ≤ N , such that

(i) V − Vp ∈ F ,Q − Qp ∈ F ,
(ii) V (x) ≤ Vp(x), and b ≤ Qp(x) ≤ Q (x), for all x ∈ RN .

Theorem 1.2. Let (VQ1), (VQ3) and (H1)–(H3) hold. Then the problem (1.5) possesses a ground state.
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