
Computers and Mathematics with Applications ( ) –

Contents lists available at ScienceDirect

Computers and Mathematics with Applications

journal homepage: www.elsevier.com/locate/camwa

Chemotaxis-driven pattern formation for a
reaction–diffusion–chemotaxis model with
volume-filling effect
Manjun Ma a,∗, Meiyan Gao b, Changqing Tong c, Yazhou Han b

a Department of Mathematics, School of Sciences, Zhejiang Sci-tech University, Hangzhou, Zhejiang, 310018, China
b Department of Mathematics, College of Sciences, China Jiliang University, Hangzhou, Zhejiang, 310018, China
c Institute of Applied Mathematics, Hangzhou Dianzi University, Hangzhou, 310018, China

a r t i c l e i n f o

Article history:
Received 17 November 2015
Received in revised form 22 June 2016
Accepted 28 June 2016
Available online xxxx

Keywords:
Chemotaxis
Amplitude equation
Weakly nonlinear analysis
Bifurcation
Pattern formation

a b s t r a c t

In this paper we analytically and numerically investigate the emerging process of pattern
formation for a reaction–diffusion–chemotaxis model with volume-filling effect. We first
apply globally asymptotic stability analysis to show that the chemotactic flux is the
key mechanism for pattern formation. Then, by weakly nonlinear analysis with multiple
scales and the adjoint system theory, we derive the cubic and the quintic Stuart–Landau
equations to describe the evolution of the amplitude of the most unstable mode, and
thus the analytical approximate solutions of the patterns are obtained. Next, we present
the selection law of principal wave mode of the emerging pattern by considering the
competition of the growing modes, and for this we deduce the change rule of the most
unstablemode and the coupled ordinary differential equations that indicates the significant
nonlinear interaction of two competing modes. Finally, in the subcritical case we clarify
that there exists the phenomenon of hysteresis, which implies the existence of large
amplitude pattern for the bifurcation parameter values smaller than the first bifurcation
point. Therefore, we answer the open problems proposed in the known references and
improve some of results obtained there. All the theoretical results are tested against the
numerical results showing excellent qualitative and good quantitative agreement.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Chemotaxis is a motion of organisms induced by variations in the concentration of chemicals. It is observed that
aggregates formwhen organismsmove up or down the concentration gradient. Like the Turingmechanism, it is considered an
important mechanism for many biological pattern formations such as the propagation of traveling band of bacteria toward
the oxygen [1,2], the outward propagation of concentric ringwaves bymotile cells of Escherichia coli [3–5], and the spiralwave
patterns during the aggregation ofDictyostelium discoideum [6,7]. Patlak and Keller and Segel did the pioneeringworks to the
mathematicalmodeling of chemotaxis in 1953 [8] and in 1970 [9,10], respectively. Based on theKeller–Segelmodel, a variety
of chemotaxis models have been proposed to describe the chemotactic aggregation process. Among them, one includes a
so-called volume-filling chemotaxis so that arbitrarily high cell densities can be precluded by setting an impassable
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threshold value for cell density in [11]. In [12,13], Wang and Hillen further developed this idea for generic cell types, and
then a generalized form of volume-filling chemotaxis model of [11,12] reads

ut = ∇ · (D(1 − u)−α∇u − χu(1 − u)β∇v)+ µu(1 − u/uc), x ∈ Ω, t > 0,
vt = 1v − v + u, x ∈ Ω, t > 0,
∇u · ν = ∇v · ν = 0, x ∈ ∂Ω, t > 0,
u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω,

(1.1)

where D(1− u)−α is the cell density-dependent diffusion coefficient and the function u(1− u)β represents the chemotactic
sensitivity, here the number 1 is defined as crowding capacity i.e., the maximal cell numbers that can be accommodated in
a unit volume of space; (x, t) ∈ Ω × [0,+∞) and Ω is a bounded convex domain in RN (N = 1, 2 and 3) with smooth
boundary ∂Ω; ν denoting the outward unit normal vector on ∂Ω; D > 0 and α, β ∈ R are constants; µ > 0 is the intrinsic
growth rate of the cell and uc stands for the carrying capacity with 0 < uc < 1; χ > 0 is called the chemotactic coefficient.

The more detailed information of (1.1) can be found in [14,15], such as its derivation and the study of various models
related to (1.1). In [14,15], authors investigated the global existence of classical solutions, local and global bifurcation of
steady state and its stability, the boundedness and existence of non-constant steady states of (1.1) with initial data (u0, v0)
satisfying

(u0, v0) ∈ [W 1,∞(Ω)]2 and 0 ≤ u0(x) < 1, v0(x) ≥ 0, x ∈ Ω. (1.2)

In this paper, based on the results established in [14,15], we shall prove that chemotaxis is the key factor of pattern
formation and further investigate the emerging process and the shape of the patterns. This interesting result of the effect
from chemotaxis on the dynamics was also found in many references for various models with chemotaxis, for example,
see [16,17,12,18]. By using the weakly nonlinear bifurcation analysis with multiple scales and Fredholm theory, we derive
the Stuart–Landau equation to describe the evolution of the amplitude of spatiotemporal pattern. Thus explicit formulas
for the spatiotemporal pattern (non-constant classical solutions) and the stationary pattern (stable non-constant steady state)
of (1.1)–(1.2) are obtained, which perfectly coincide with the corresponding results obtained in [14]. We also discuss the
competition of unstable modes away from the threshold value kc when the bifurcation parameter χ is large enough. To
illustrate the nonlinear interaction of the amplitudes of two competing modes, we deduce a coupled ordinary differential
equationwhose phase diagramdisplays how the initial amplitude affects the shape of stationary pattern. The selection lawof
the wave modes of the stationary patterns is found. For the subcritical case both the theoretical analysis and the bifurcation
diagram verify the coexistence of stable steady states in the system (1.1) and the existence of large amplitude pattern before
the positive uniform steady state loses its stability. This answers the open question in [19,20].

This paper is organized as follows. In Section 2,we shall show that the pattern formation is caused by chemotaxis and give
the critical wave number and the critical value of the bifurcation parameter. In Section 3, following the approach presented
by Gambino et al. in [21,22], we derive the Stuart–Landau equations to capture the evolution of the amplitude of the first
admissible mode both in the case of supercritical and subcritical bifurcation. Accordingly, the analytical approximation
of spatiotemporal patterns are obtained. Section 4 is devoted to discuss the stationary pattern of the supercritical case.
Section 5 is to consider the stationary pattern of the subcritical case. Conclusion and problems for further study are presented
in Section 6. Finally, Appendices A and B give the details of the derivation of the quintic Stuart–Landau equation and the
equations of the amplitudes of the two unstable modes.

Throughout this paper, we will always assume that

α + β > 1 (1.3)

and in one dimensional case, we takeΩ = [0, l] with l > 0.

2. Chemotaxis-driven instability

To verify that the pattern formation of the system (1.1)–(1.2) is driven by chemotaxis, we first give an important lemma.

Lemma 2.1 ([14, Theorem 2.1]). Let (u0, v0) fulfill (1.2), and α and β satisfy (1.3). Then the problem (1.1)–(1.2) has a global
classical solution (u, v). Moreover, there exists a constant δ > 0 such that

0 ≤ u(x, t) ≤ 1 − δ, 0 ≤ v(x, t) ≤ 1 − δ, for all (x, t) ∈ Ω × (0,∞). (2.1)

Then we present a result of the kinetic system of (1.1)–(1.2)
du
dt

= µu

1 −

u
uc


,

dv
dt

= u − v,

u(0) = u0, v(0) = v0,

(2.2)
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