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a b s t r a c t

In this paper, by using the real representations of quaternion matrices, the particular
structure of the real representations of quaternion matrices, the Kronecker product of
matrices and the Moore–Penrose generalized inverse, we obtain the expressions of the
minimal norm least squares solution, the pure imaginary least squares solution, and the
real least squares solution for the quaternionmatrix equation AXB+CXD = E, respectively.
Our resulting formulas only involve real matrices, and therefore are simpler than those
reported in Yuan (2014). The corresponding algorithms only perform real arithmetic which
also consider the particular structure of the real representations of quaternion matrices,
and therefore are very efficient and portable. Numerical examples are provided to illustrate
the efficiency of our algorithms.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

In the study of theory and numerical computations of quaternionic quantum theory, in order to well understand
the perturbation theory [1], theoretical discussions [2–4], and experimental proposals [5–7] underlying the quaternionic
formulations of the Schrödinger equation and so on, we often meet problems of approximate solutions of quaternion
problems, such as approximate solutions of the quaternion linear equation AXB ≈ E which is appropriate when there is
an error in matrix E, i.e., quaternionic least squares (QLS) problem. Due to the extensive applications of the quaternion
matrix equations and their least squares solutions in computer science, quantum physics, statistic, signal and color image
processing, rigid mechanics, quantum mechanics, control theory, field theory and so on [8–13], many researchers are
interested in them. There are some valuable results on the QLS problem. For example, by using the matrix decompositions,
the complex representations of quaternion matrices, the Moore–Penrose generalized inverse and the Kronecker product
of matrices, Yuan et al. derived the expression of Hermitian solution for the matrix nearness problem associated with the
quaternion matrix equation AXAH

+ BYBH
= C [14], the least squares Hermitian solution of the quaternion matrix equation

(AXB, CXD) = (E, F) with the least norm [15] and the special least squares solutions of the quaternion matrix equation
AX = B [16]. By means of the complex representations of quaternion matrices, Jiang et al. studied algebra algorithms
for the QLS problem [17], the QLS eigenproblem [18] and the QLS problem with constraints [19] in quaternionic quantum
theory, and obtained some theoretical results.Moreover, by the real representations of quaternionmatrices, theQLS problem
in quaternionic quantum theory in [20] was reconsidered, and the authors derived an operable iterative method called
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LSQR-Q algorithm to find the minimum-norm solution of the QLS problem. According to this algorithm, Ling et al. gave an
iterative algorithm for finding Hermitian tridiagonal solution with the least norm to the QLS problem [21].

Consider the generalized Sylvester matrix equation AXB + CXD = E, where A, B, C,D are given matrices of suitable
sizes, and X is an unknown matrix of suitable size over real number field, complex number field or quaternion field. When
B and C are identity matrices, it reduces to the well-known Sylvester equation. When C and D are identity matrices, it
reduces to thewell-known Stein equation. Beingwell-known in both pure and appliedmathematics, it has been investigated
extensively [22–29]. In [29], by using the complex representations of quaternionmatrices, the Kronecker product ofmatrices
and the Moore–Penrose generalized inverse, the authors obtained the expressions of the minimal norm least squares
solution, the pure imaginary least squares solution and the real least squares solution for the quaternion matrix equation
AXB + CXD = E, and provided several numerical examples to illustrate the efficiency of their methods. Motivated by the
above work, we will study these problems again by using the real representations of quaternion matrices, the particular
structure of the real representationmatrices, the Kronecker product ofmatrices and theMoore–Penrose generalized inverse.
Our resulting formulas only involve real matrices, and therefore are simpler than those reported in [29].

Throughout this paper, let R be the real number field, C the complex number field, and Q = R ⊕ Ri ⊕ Rj ⊕ Rk the
quaternion field, where ij = −ji = k, i2 = j2 = k2 = ijk = −1. Rm respects the set of all real column vectors with m
coordinates. Rm×n, Cm×n, Qm×n and IQm×n respect the sets of allm× n real matrices, complex matrices, quaternion matrices
and pure imaginary quaternionmatrices, respectively. For A ∈ Cm×n, Re(A) and Im(A) denote the real part and the imaginary
part of A, respectively. For arbitrary matrix A, AT , Ā, AH , tr(A) and AĎ represent the transpose, the conjugate, the conjugate
transpose, the trace and the Moore–Penrose inverse of A, respectively. The identity matrix of order n is denoted by In. For
any A, B ∈ Qm×n, we define the inner product ⟨A, B⟩ = tr(BHA). Then Qm×n is a Hilbert inner product space and the norm of
a matrix generated by this inner product is the matrix Frobenius norm ∥ · ∥. Let A = (a1, a2, . . . , an) ∈ Rm×n, where ai ∈ Rm

is the ith column of thematrix A, i = 1, 2, . . . , n, and the vec operator of A is defined to be vec(A) = (aT1, a
T
2, . . . , a

T
n)

T
∈ Rmn.

For A = (aij) ∈ Rm×n, B = (bij) ∈ Rp×q, the symbol A⊗ B = (aijB) ∈ Rmp×nq stands for the Kronecker product of A and B. The
rand(m) is a randomly generated matrix of orderm.

In this paper, we will study three kinds of special solutions of the following quaternion matrix equation

AXB + CXD = E, (1.1)

which were previously discussed in [29] by using the complex representations of quaternion matrices.

Problem 1. Let A ∈ Qm×n, B ∈ Q k×s, C ∈ Qm×n, D ∈ Q k×s, E ∈ Qm×s and

QL = {X |X ∈ Q n×k, ∥AXB + CXD − E∥ = min}. (1.2)

Find out XQ ∈ QL such that ∥XQ∥ = minX∈QL ∥X∥.

Problem 2. Let A ∈ Qm×n, B ∈ Q k×s, C ∈ Qm×n, D ∈ Q k×s, E ∈ Qm×s and

IL = {X |X ∈ IQ n×k, ∥AXB + CXD − E∥ = min}. (1.3)

Find out XI ∈ IL such that ∥XI∥ = minX∈IL ∥X∥.

Problem 3. Let A ∈ Qm×n, B ∈ Q k×s, C ∈ Qm×n, D ∈ Q k×s, E ∈ Qm×s and

RL = {X |X ∈ Rn×k, ∥AXB + CXD − E∥ = min}. (1.4)

Find out XR ∈ RL such that ∥XR∥ = minX∈RL ∥X∥.

XQ , XI and XR are respectively called the minimal norm least squares solution, pure imaginary least squares solution, and
real least squares solution of the quaternion matrix equation (1.1).

This paper is organized as follows. In Section 2, we state some preliminary results. In Section 3, we study the solutions of
Problems 1–3 by using the real representations of quaternionmatrices, and compare with those derived in [29] by using the
complex representations of quaternionmatrices. In Section 4, we provide numerical algorithms for solving Problems 1–3 by
using the results obtained in Section 3. In Section 5, we present two numerical examples to illustrate the efficiency of our
methods. In Section 6, we offer some concluding remarks.

2. Preliminaries

A quaternion matrix A ∈ Qm×n can be uniquely expressed as A = A0 + A1i + A2j + A3k, where A0, A1, A2, A3 ∈ Rm×n. A
pure imaginary quaternion matrix B ∈ Qm×n can be uniquely expressed as B = B1i + B2k + B3j, where B1, B2, B3 ∈ Rm×n.
For any matrix A = A0 + A1i + A2j + A3k ∈ Qm×n, its real representation matrix can be defined as

AR
=

A0 −A1 −A2 −A3
A1 A0 −A3 A2
A2 A3 A0 −A1
A3 −A2 A1 A0

 ∈ R4m×4n.
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