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a b s t r a c t

The dynamics of a diffusive toxin producing phytoplankton model with maturation delay
and three-dimensional patch subject to Neumann boundary condition is investigated in
this paper. The global stability of boundary equilibrium is obtained. The local stability
of the coexistent equilibrium and the existence of Hopf bifurcation are investigated. The
conditions for determining the bifurcation direction and the stability of the bifurcating
periodic solution are derived.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Phytoplankton are the basis for aquatic food chains and they can absorb not less than half of the carbon dioxide, producing
a huge amount of oxygen for human and other living animals. The importance of phytoplankton in marine ecosystem has
been widely recognized [1–4].

In the ocean, phytoplanktonmay be eaten by zooplankton. In reality, to avoid being eaten by zooplankton, phytoplankton
may use various anti-grazing strategies such as filamentous structures [5], cell morphology [6], and toxin releasing [7].
Among these anti-grazing strategies, the toxin releasing is an important anti-grazing strategy, and it has effect on both the
phytoplankton and zooplankton species.

In the last decades, many scholars have constructed different mathematical models to describe the dynamics of toxin-
producing phytoplankton [8–11]. In [12], Chattopadhyay et al. propose a toxin-producing phytoplanktonmodel with three-
dimensional patch for explaining both red tides and recurring phytoplankton blooms, that is
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with the initial conditions P(0) = P0 > 0, Z(0) = Z0 > 0, which are biologically meaningful. Here P(t) and Z(t) represent
phytoplankton and zooplankton densities at time t respectively. All the parameters in the model are positive. r and K
represent intrinsic growth rate and the carrying capacity of the prey respectively. The functional response is Holling type II.
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f represents the rate of free phytoplankton that can be preyed by zooplankton. c and e represent the predation rate and the
conversion rate respectively.µ is the natural mortality of zooplankton. ρ is the measure of toxicity. In [12], authors suppose
that a fraction 1− f of the phytoplankton can form three-dimensional patch in the ocean and the surface of the patch results
proportional to ρP2/3. To know the meaning of these parameters, one can refer to [12]. Authors study the stability and Hopf
bifurcation for system (1.1) and qualitatively analyze the model by simulation [12].

In recent years, phytoplankton and zooplankton models with diffusion term derive great attention, since that
phytoplankton and zooplankton distribute inhomogeneous in different spatial location at time t in the lakes or oceans,
and they will move or diffuse for many reasons, such as currents and turbulent diffusion. So in more realistic ecological
models, the diffusion should be considered. In this paper, we will study the effect of diffusion on system (1.1). In addition,
time delay is an important factor in phytoplankton and zooplankton model and it may affect the dynamics of the model.
Considering the time delay in maturation of zooplankton, we consider the following model
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Px(0, t) = Zx(0, t) = 0, Px(Ω, t) = Zx(Ω, t) = 0, t > 0
P(x, θ) = P0(x, θ) ≥ 0, Z(x, θ) = Z0(x, θ) ≥ 0, x ∈ [0,Ω], θ ∈ [−τ , 0].

(1.2)

In system (1.2), we choose Neumann boundary condition based on the hypothesis that the region phytoplankton and
zooplankton lived is closed with no species entering and leaving it at the boundary. In the rest of this paper, we will assume
Ω = lπ , where l > 0.

The rest of this paper is organized as follows. In Section 2, we study global stability of the boundary equilibrium. In
Section 3, we study the stability of coexistent equilibria and existence of Hopf bifurcation. In Section 4, we investigate the
stability and direction of bifurcating periodic solution. In Section 5, we give some numerical simulations. In Section 6, we
give a conclusion.

2. Global stability of the boundary equilibrium

Obviously, system (1.2) has a origin equilibrium (0, 0) which is unstable and a boundary equilibrium (K , 0). In this
section, we discuss the global stability of the boundary equilibrium (K , 0). Consider the case f < µ(a + γK)/(eK). Denote
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T . It is easy to see that g = (g1, g2) is mixed quasi-monotone in R̄2
+

× R̄2
+
. Define

(P̂, Ẑ) = (0, 0) and (P̃, Z̃) = (M1,M2), whereM1 ≥ K andM2 ≥ efM1/(a+ γM1). Then (P̂, Ẑ) and (P̃, Z̃) are coupled upper
and lower solutions of the system (1.2), since
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ChooseM1 andM2 as sufficiently large, from Theorem 2.1 in [13], we know that there exists a unique global nonnegative
solution (P, Z) for system (1.2) with nonnegative initial value

P0(x, θ), Z0(x, θ), x ∈ [0, Lπ ], θ ∈ [−τ , 0]

and P0(x, θ) ≢ 0 and Z0(x, θ) ≢ 0. Furthermore, the maximum principle implies that P(x, t), Z(x, t) > 0 for t > 0.
Let (P̂, Ẑ) = (ϵ, 0) and (P̃, Z̃) = (K , δ(ϵ)), where ϵ is a small positive number and δ(ϵ) = r(1 − ϵ/K)(a + γ ϵ)/cf . It is

easy to verify that (ϵ, 0) and (K , δ(ϵ)) are also coupled upper and lower solutions of the system (1.2). When

ϵ < φ1, ψ1 < K , 0 < φ2, ψ2 < δ(ϵ)

from the boundedness of the partial derivative of gi (i = 1, 2) with respect to φ, ψ , we know that gi satisfy the Lipschitz
condition. We denote the Lipschitz constants by Ki, (i = 1, 2). From Theorem 2.1 in [13], we see that there exists a unique
global solution (P, Z) to the system (1.2) and it satisfies (ϵ, 0) ≤ (P, Z) ≤ (K , δ(ϵ))whenever (ϵ, 0) ≤ (P0(x, θ), Z0(x, θ)) ≤

(K , δ(ϵ)).
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