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a b s t r a c t

In the present paper, we obtain a variational principle for a generalized coupled Za-
kharov–Kuznetsov system,which does not admit any Lagrangian formulation in its present
form. The eminent Noether‘s theorem will then be employed to compensate for this ap-
proach. In addition, exact solutions will be constructed for the generalized coupled Za-
kharov–Kuznetsov system using the Kudryashov method and the Jacobi elliptic function
method.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

In [1], the authors derived the generalized coupled Zakharov–Kuznetsov system
ut + uxxx + uyyx − 6uux − vx = 0,
vt + δvxxx + λvyyx + ηvx − 6µvvx − βux = 0. (1)

The coupled Zakharov–Kuznetsov system describes two interacting weakly nonlinear waves in anisotropic back-ground
stratified fluid flows. Here x and y represent the propagation and transverses coordinates respectively, while η is the
group-velocity shift between the coupled models, δ, λ are the relative longitudinal and transverse dispersion coefficients,
and µ, β represent the relative nonlinear and coupling coefficients. It is easy to see that if the transverse variation (uy =

vy = 0), the coupled Zakharov–Kuznetsov system reduces to a family of Korteweg–de Vries equations [1], which describe
the interaction of the nonlinear long waves in various fluid flows. Indeed, Zakharov–Kuznetsov system has been studied
by other researchers using different approaches. For example, the polynomial expansion method, extended Jacobi elliptic
function expansion method and the modified extended tanh method were used to find solitary wave solutions, periodic
solutions and rational type solutions [2–4]. See also [5,6].

In this paper, wewill workwith a slightmodification of the generalized coupled Zakharov–Kuznetsov system (1), namely
ut + uxxx + uyyx − 6uux − vx = 0,
vt + δvxxx + λvyyx + ηvx − 6µvvx − ux = 0. (2)

The objective of the present study is to construct conservation laws for system (2) using Noether’s approach. Thereafter, we
focus our investigations on the derivation of exact solutions for the generalized coupled Zakharov–Kuznetsov system (2) by
invoking the Kudryashov method and the Jacobi elliptic function method.
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2. Fundamental relations

We briefly present some fundamental notations and definitions to be used in Section 3. For details, we direct the diligent
reader to [7–11].

Let us consider an nth-order system of k partial differential equations with x = (x1, x2, . . . , xm) independent variables
and u = (u1, u2, . . . , uq) dependent variables, namely

Eα
= (x, u, u(1), u(2), u(3), . . . , u(n)) = 0, α = 1, . . . , k, (3)

where u(i) denote the collection of ith-order of partial derivatives with uα
i = Di(uα), uα

ij = DjDi(uα), . . . , where the total
differential operator is defined by

Di =
∂

∂xi
+ uα

i
∂

∂xi
+ uα

ij
∂

∂uα
j

+ · · · , i = 1, . . . ,m. (4)

Consider the vector field

X = ξ i ∂

∂xi
+ ηα ∂

∂uα
+


s≥1

ζ α
i1...is

∂

∂uα
i1...is

, (5)

where ζ α
i1...is

are defined in [12] and references therein.
The vector field (5) in characteristic form is

X = ξ i ∂

∂xi
+ Wα ∂

∂uα
+ Di(Wα)

∂

∂uα
i

+ DiDj(Wα)
∂

∂uα
ij

+ · · · , (6)

whereWα is the Lie characteristic function.
The Noether operators corresponding to the vector field X are defined by

N i
= ξ i

+ Wα δ

δuα
i

+


s≥1

Di . . .Dis(W
α)

δ

δuα
ij...js

, (7)

where

δ

δuα
i

=
∂

∂uα
i

+


s≥1

Dj1 . . .Djis (W
α)

δ

δuα
ij...js

, i = 1, . . . ,m, α = 1, . . . , k (8)

is the Euler–Lagrange operator.

2.1. Euler–Lagrange equation

A function L(x, u, u(1), u(2), u(3), . . . , u(s)), s ≤ k is said to be a Lagrangian of system (3) if the Euler–Lagrange equation

δL
δuα

= 0, α = 1, . . . , k. (9)

2.2. Noether symmetry operator

The vector field X is called aNoether point symmetry operator corresponding to the Lagrangian L(x, u, u(1), u(2), u(3), . . . ,

u(k−1)) if there exists the point-dependent gauge terms A = (A1, A2, A3, . . . , Am) such that the Killing-type equation

X(L) + {Di(ξ
i)}L = Di(Ai) (10)

holds.
We now state the prominent Noether theorem.

Theorem 1 (Noether [7]). If X is a Noether point symmetry operator associated with the Lagrangian L(x, u, u(1), u(2), u(3), . . . ,

u(k−1)) of Eq. (3), there corresponds a vector T = (T 1, T 2, . . . , Tm) where T i is defined by

T i
= Ai

− N iL (11)

is a conserved vector for Eq. (3) associated with the operator X.
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