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a b s t r a c t

A common feature of pattern formation in both space and time is the destabilization of
a stable equilibrium solution of an ordinary differential equation by adding diffusion or
delay, or both. Here we study linear stability of general reaction–diffusion systems with
off-diagonal time delays. We show that a delay-stable system cannot be destabilized by
diffusion, and that a diffusion stable system is also stable with respect to delay, if the
diffusion is sufficiently fast. A systemwith direct negative feedbackwhich is strongly stable
with respect to diffusion can be destabilized by off-diagonal delay.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Since the seminal work of Turing in 1952 [1] it has been known that stable equilibrium solutions of ordinary differential
equations can be destabilized in a spatial setting by the introduction of diffusion with different diffusion constants for
different species. Later works have proposed specific reaction mechanisms exhibiting Turing instability, for instance the
well-known activator–inhibitor model introduced originally by Gierer and Meinhardt [2]. The mechanism for Turing
instability in general systems for n interacting species has been studied in [3–6]. The typical results are necessary or sufficient
conditions for a change in the spectrumof amatrixwith respect to the imaginary axis. Formore examples of possible reaction
kinetics and sample applications, see the book by Murray [7].

Instability caused by time delays has also been studied in some recent works such as [8] for neural networks, [9]
for general chemical networks and [10] for a model of human respiration. Commonly, instabilities caused by delays are
associated with oscillations of the solutions of a system of delay differential equations. The linear stability of general delay
systems has been studied in [11], where the authors give necessary and sufficient conditions for the null solution of a linear
delay system to be asymptotically stable for any choice of off-diagonal delays. The interaction of delay and diffusion effects
often occurs simultaneously, in particular inmodels inspired by biological problems. For some recent works that investigate
both diffusion and delay together we refer to [12–18]. These works exhibit many different techniques to derive results, such
as the use of Lyapunov functions, and a large number of applications, such as modeling of infectious diseases.

In this paper, we investigate the relationship between different kinds of linear stability of reaction–diffusion systems
with delays. Hadeler and Ruan in [13] showed that for 2-dimensional systems, stability with respect to off-diagonal delay
implies stability with respect to diffusion. We extend this result from two dimensional reaction–diffusion systems with
off-diagonal delays to general n-dimensional systems. Our results apply to systems with non-negative diffusion coefficients
and non-negative off-diagonal delays. The theory on linear stability for delay systems developed in [11] is instrumental in
many of the proofs.
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In Section 2, we review some definitions of matrix stability. In Sections 3 and 4, we discuss stability and instability
results for general reaction–diffusion systems and delay systems, respectively. Section 5 is devoted to the study of
reaction–diffusion systems with delays. There we prove the main results of this paper about the relationships between
the different stability concepts. Finally, in Section 6, we present an example illustrating the main results.

2. Matrix definitions and stability

The stability of equilibrium solutions of differential equations can often be described in terms of matrix stability. In this
section we give the relevant definitions and review some results on matrix stability. Let D = diag(d1, . . . , dn) be a diagonal
matrix with entries di, i = 1, 2, . . . , n. We will write D ≥ 0 if all di ≥ 0 and D > 0 if all di > 0. We use the common
notations like x > 0 to indicate inequalities for all components of a vector or a matrix.

Definition 1. A matrix A ∈ Rn×n is called

(a) stable if all eigenvalues of A have negative real part,
(b) strongly stable with respect to diffusion if A − D is stable for every non-negative diagonal matrix D,
(c) excitable with respect to diffusion if it is stable, but not strongly stable with respect to diffusion.

Matrices that are strongly stable with respect to diffusion have been characterized up to order n = 3 in [19].
Recall that a submatrix of a matrix is called a principal submatrix if rows and columns with the same indices are deleted.

The determinant of a submatrix is called a minor, thus the determinant of a principal submatrix is a principal minor. If
I ⊂ {1, . . . , n} is a subset of indices, then det A[I] denotes the corresponding principal minor, which is formed by the
rows and columns with indices in I . Let the complementary set to I be Ic = {1, . . . , n} \ I . Then det A[Ic] denotes the
corresponding complementary principalminor,where the rows and columnswith indices in I have been removed. The empty
matrix is defined to have determinant 1. The quantity (−1)|I| det A[I]where |I| is the number of indices in I is called the signed
principal minor.

The companion matrix of a matrix A is defined as in [20],

M(A) =


−|aij| if i ≠ j

|aii| otherwise.

We will need the following definitions throughout the paper. The second set of definitions is taken from [20].

Definition 2. (a) A n×n-matrix is called irreducible, if the directed graph of the corresponding adjacencymatrix is strongly
connected, that is, every vertex can be reached from every other vertex along a directed path.

(b) A matrix A is called a Z-matrix if aij ≤ 0 for i ≠ j.
(c) A matrix A is called aM-matrix if it is of the form A = sI − Bwhere s ≥ ϱ(B) and B ≥ 0, [21]. Here ϱ denotes the spectral

radius.
(d) A matrix A is called an H-matrix if the companion matrix M(A) is an M-matrix.
(e) A matrix A is called a P-matrix if all principal minors are positive. A matrix A is of class P0 if all its principal minors are

non-negative.

We note that the labeling of the matrix classes is not uniform across the literature. A Z-matrix for which all eigenvalues
have positive real part is indeed a nonsingularM-matrix.We refer to the book by Fiedler [22] formany equivalent conditions
for a matrix with non-positive off-diagonal entries to have only positive, respectively only non-negative principal minors,
where these classes are denoted by K, respectively K0. The K-matrices are also known as nonsingular M-matrices (see
Definition 2(c)).

3. Reaction–diffusion systems and Turing instability

Let u = (u1, . . . , un) denote, for example, the vector of non-negative species concentrations or populations. If variations
in the concentration in space are neglected, the species interactions are given by the ordinary differential equation

du
dt

= f (u), (1)

where f (u) is a smooth function. Let A =
∂ fi
∂uj

(u∗) be the Jacobi matrix of f , evaluated at the equilibrium point u∗. We assume
that u∗ is a hyperbolic equilibrium of (1), that is, A has only eigenvalues with nonzero real part. By linearizing (1) at u∗ we
obtain

du
dt

= Au.

Now we assume that species concentrations ui(x, t), i = 1, . . . , n vary within a bounded domain Ω ⊂ Rk with smooth
boundary, and that species i diffuses with rate constant d̃i ≥ 0. The reaction–diffusion system with the same dynamics as
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