
Computers and Mathematics with Applications ( ) –

Contents lists available at ScienceDirect

Computers and Mathematics with Applications

journal homepage: www.elsevier.com/locate/camwa

Periodic attractor for reaction–diffusion high-order Hopfield
neural networks with time-varying delays
Lian Duan a, Lihong Huang b,∗, Zhenyuan Guo c, Xianwen Fang a

a School of Mathematics and Big Data, Anhui University of Science and Technology, Huainan, Anhui 232001, PR China
b School of Mathematics and Statistics, Changsha University of Science and Technology, Changsha, Hunan 410114, PR China
c College of Mathematics and Econometrics, Hunan University, Changsha, Hunan 410082, PR China

a r t i c l e i n f o

Article history:
Received 20 May 2016
Received in revised form 24 September
2016
Accepted 10 November 2016
Available online xxxx

Keywords:
High-order Hopfield neural network
Time-varying delay
Reaction–diffusion
Periodic mild solution
Global exponential stability

a b s t r a c t

This paper is concerned with a class of reaction–diffusion high-order Hopfield neural net-
works with time-varying delays subject to the Dirichlet boundary condition in a bounded
domain. Easily verifiable delay-independent criteria are established to ensure the existence
of periodicmild solutions, and the global exponential stability of the periodicmild solutions
is also discussed by using the exponential dissipation property of semigroup of operators.
The obtained results are easy to check and they effectually complement previously known
results. A numerical example is given to show the effectiveness of theoretical results.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years, different types of neural network models have been studied extensively and have been applied widely in
many areas such as combinatorial optimization, signal processing, pattern recognition, speed detection of moving objects,
optimization and associative memories, see [1–3]. In particular, high-order Hopfield neural networks, as an important class
of dynamical systems, have been the object of intensive analysis by many authors in both theory and application due to
the fact that high-order neural networks can be with impressive computational, learning, and storage capabilities [4], and
have stronger approximation property, faster convergence rate, greater storage capacity, and higher fault tolerance than the
low-order neural networks [5]. Therefore, much research attention has been given to the study of the dynamical behaviors
for high-order neural networks, see, e.g., [6–11] and the references therein.

As is well known, in the modeling of the artificial neural networks or biological neuron networks, it is sometimes neces-
sary to take account of timedelays inherent in the dynamic phenomenabecause of the finite processing speed of information,
for instance, the finite axonal propagation speed from soma to synapses, the diffusion of chemical across the synapses, the
postsynaptic potential integration of membrane potential at the neuronal cell body and dendrites. Furthermore, in the elec-
tronic implementation of artificial neural networks, the time delays are omnipresent in the communication and response
of neurons owing to the finite switching speed of amplifiers [12]. Moreover, to process moving images, one must introduce
time delays in the signals transmitted among the cells [13], and time delays may lead to instability, divergence, oscilla-
tion, or bifurcation which may be harmful to a system [14]. From the point of view of engineering applications, periodic
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oscillation in neural networks is an interesting dynamic behavior, as many biological and cognitive activities require repe-
tition (e.g., heartbeat, respiration, mastication, locomotion, and memorization). In addition, periodic oscillations in neural
networks have found many applications, such as associative memories, pattern recognition, machine learning, and robot
motion control, see [15]. Thus, the study of periodic neurodynamics with consideration of the delayed problem becomes
extremely significant to manufacture high quality neural networks.

On the other hand, as pointed out by Gotarredona et al. in [16,17], second-order cellular neural networks with reac-
tion–diffusion terms have been identified which are able to reproduce through parameter setting a rich variety of spatio-
temporal behaviors, which can be capable to robustly reproduce the rich phenomenology associated with active wave
propagation and pattern formation. These wave formation phenomena are exhibited by systems belonging to very different
scientific disciplines, for example, in neurophysiology, the propagation of electrical impulses through the nervous system,
or the propagation of the cardiac movement through the cardiac muscle. The reaction–diffusion effects, therefore, cannot
be ignored in both manmade and biological neural networks, especially when electrons are moving in a noneven electro-
magnetic field. So we must consider that the neuron activations vary in time as well as in space, and in this case the model
should be expressed by partial differential equations. Thus, there has been an increasing interest in the study of qualitative
analysis such as stability, periodicity or synchronization of neural networks with reaction–diffusion terms and delays and
a large number of works have been reported in the literature, see [18–27] and the references therein. However, it is worth
noting that all the connection weight coefficients and external input in the references mentioned above are constants, or
the external input is periodic, and to the best of our knowledge, few published papers consider the periodic attractor issue
of reaction–diffusion high-order Hopfield neural networks with time-varying delays, and all the results in the references
mentioned above cannot be directly extended to study such a problem.

Motivated by the above discussions, the aim of this paper is to study the existence and global exponential stability
of periodic mild solution for high-order Hopfield reaction–diffusion neural networks with time-varying delays subject
to Dirichlet boundary conditions, as well as positive effects of diffusion terms on existence and exponential stability of
periodic mild solution. Based on the Lyapunov stability theory, we establish some novel and easily verified exponential
stability criteria which also guarantee the networkwill be exponentially convergent to the periodic solution. The theoretical
methods developed in this paper have universal significance and can be easily extended to study many other types of
reaction–diffusion neural networks with delays.

The rest of this paper is organized as follows. In Section 2, the considered model of high-order Hopfield neural networks
with reaction–diffusion terms and time-varying delays is presented. Some preliminaries are also given in this section. In
Section 3, the existence and global exponential stability of periodic mild solutions for the considered model are studied.
Then, in Section 4, a numerical example is presented to show the correctness of the theoretical analysis. Finally, Section 5
concludes this paper.
Notation. Set H1

=

u|u, ∂u

∂xk
∈ L2(Ω), k = 1, 2, . . . ,m


, L2(Ω) is the space of real functions on Ω which are L2 for the

Lebesgue measure, C∞
c is the space of infinitely differentiable functions with compact support in Ω , and H1

0 (Ω) is closure
of C∞

c in Sobolev space H1.
(L2(Ω))n is the space of real functions (u1, u2, . . . , un) on Ω , where ui(i = 1, 2, . . . , n) is L2 for the Lebesgue measure.

It is a Banach space equipped with the norm ∥u∥L2 = maxi=1,2,...,n ∥ui∥L2 , where ∥ui∥L2 =


Ω
|ui(x)|2dx

 1
2 . If no confusion

arises, ∥ · ∥L2 is simply denoted by ∥ · ∥.
Let C(R, (L2(Ω))n) be the space of functions which are continuous in t and L2 in x.
Denote

c i = inf
t∈R

ci(t), c i = sup
t∈R

ci(t), āij = sup
t∈R

|aij(t)|, b̄ijl = sup
t∈R

|bijl(t)|,

Īi = sup
t∈R

|Ii(t)|, Ī = max
1≤i≤n

Īi,

Di = min
1≤k≤m

Dik, and κ =


max
1≤i,j≤n

sup
t∈R

τij(t), max
1≤i,k,l≤n

sup
t∈R

σikl(t), max
1≤i,k,l≤n

sup
t∈R

δikl(t)

.

2. Preliminaries

From the point of view of engineering applications, the effects of reaction–diffusion in biological and manmade neural
networks are inevitable especially when electrons are moving in a noneven electromagnetic field [18]. A single high-order
Hopfield neural network with time-varying delays and reaction–diffusion terms can be described by

∂ui(t, x)
∂t

=

m
k=1

Dik
∂2ui(t, x)

∂x2k
− ci(t)ui(t, x) +

n
j=1

aij(t)fj(uj(t − τij(t), x))

+

n
j=1

n
l=1

bijl(t)fj(uj(t − σijl(t), x))fl(ul(t − δijl(t), x)) + Ii(t), (2.1)
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