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a b s t r a c t

Large Eddy Simulation (LES) is a very useful model for simulating turbulent flows (see
Argyropoulos and Markatos, 2015, Guermond et al., 2004 or Sagaut, 2006, for example).
One of the possible ways to derive the LES equations is to apply a filter operator to the
Navier–Stokes equations, obtaining a new equation governing the behavior of the filtered
velocity. This approach introduces the so called subgrid-scale stress tensor in the equations,
that must be expressed in terms of the filtered velocity to close the problem. One of the
most popular models is that proposed by Smagorinsky (1963), where the subgrid-scale
stress tensor is modeled by introducing an eddy viscosity.

In this work, we shall propose a new approximation to this problem by applying the
filter, not to the Navier–Stokes equations, but to a generalized version of these equations
with nonlinear viscosity. That is,we shall introduce a nonlinear viscosity, not as a procedure
to close the subgrid-scale stress tensor, but as part of the model itself (see below).
Consequently, we shall need a different method to close the subgrid-scale stress tensor,
and we shall use the Clark approximation, where the Taylor expansion of the subgrid-scale
stress tensor is computed (see Carati et al., 2001 and Vreman et al., 1966).

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

It is generally accepted that Navier–Stokes equations accurately model the behavior of incompressible viscous fluids
on macroscopic scales. Today it is possible to simulate these equations numerically thanks to high computing power
available. However, Direct Numerical Simulation (DNS) is limited to relatively low Reynolds numbers, because to simulate
Navier–Stokes equations for a given value of Reynolds number (Re), at least,O(R9/4

e ) degrees of freedom are needed (see [1]).
There are several methods to overcome this problem. Reynolds Averaged Navier–Stokes (RANS) equations are a class of

models extensively used to provide time-averaged solutions of the Navier–Stokes equations, for a high Reynolds number,
by the scientific community (see, for example, [2–4]). Among them, the k − ε models are, by far, the most widely used
and tested two-equations RANS models (standard k − ε model can be found in [5]). Large Eddy Simulation (LES) models
are another class of models frequently used to simulate turbulent flows (interested readers can find several LES models in
[2,6–8,1,9] or [10]). Usually, LES is presented as an ‘‘averaged’’ or ‘‘filtered’’ version of Navier–Stokes equations. We also
want to mention the Detached-Eddy Simulation (DES) models, that were originated with the purpose of combining LES and
RANS approaches (see for example [11] or [12]).

In this paper we aim to obtain a new LES model, therefore we consider a ‘‘filter’’ operator f → f̄ (a spatial filter, a time
filter or both), and let us assume that it is linear and commutes with spatial and time derivatives (see [10] for different
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examples of this kind of filters). If we apply this filter to Navier–Stokes equations

∂u
∂t

+ (∇u)u +
1
ρ0

∇p − ν1u = f, (1)

∇ · u = 0, (2)
(where u is the velocity field, p is the pressure, and f is the acceleration due to external forces), we obtain

∂ū
∂t

+ (∇ū) ū +
1
ρ0

∇p̄ − ν1ū = f̄ − ∇ · τ , (3)

∇ · ū = 0, (4)

τij = uiuj − ūiūj, (5)
where τ is the so called subgrid-scale stress tensor. To close the LES model it is necessary to express the subgrid-scale stress
tensor only in terms of ū. One of themost popular LESmodels is that proposed by Smagorinsky [13], where the subgrid-scale
stress tensor is modeled by introducing an eddy viscosity νe such that

τ = −2νeD̄, νe = (CS1x)2
√
2 |D̄|, (6)

D̄ =
1
2


∇ū + ∇ūT  , |D̄| =


3

i,j=1

D̄ijD̄ij

1/2

, (7)

1x is the subgrid-scale characteristic length and CS is a constant chosen to allow the model to emulate the kinetic-energy
dissipation predicted by Kolmogorov (see [6,1] or [9]).

The Smagorinsky model is sometimes too dissipative, and it has other theoretical problems, such as the fact that the
subgrid-scale stress tensor in (6) is odd in ū, when by definition (see (5)), it must be even in ū. This happens because (6)
does not try to approximate the subgrid-scale stress tensor as defined in (5), but (as we have said before) to emulate the
kinetic-energy dissipation predicted by Kolmogorov.

2. Deriving the new LES model

In the previous section, we have pointed out that the Smagorinsky model introduces dissipation when approximating
(5) by (6)–(7). In this section, we shall propose to model this dissipation by introducing a nonlinear viscosity in the
Navier–Stokes equations and then we shall apply the filter. Acting in such a way we introduce the dissipation predicted
by Kolmogorov directly in our model and, when applying the filter, we shall close the LES model by approximating the
subgrid-scale stress tensor using Clark approximation (see Section 2.2).

2.1. Introducing the nonlinear viscosity

Let us consider the following generalization of Navier–Stokes equations

ρ0


∂u
∂t

+ (∇u)u


= ρ0f + ∇ · T, (8)

∇ · u = 0, (9)
where the stress tensor T is given by

T = −pI + 2µeD, D =
1
2


∇u + ∇uT  , (10)

and where the dynamic viscosity µ0 has been substituted by the effective viscosity µe depending on the norm of the strain
rate tensor D. To fix ideas, let us choose the following effective viscosity

µe = µe(|D|) = µ0

1 + λ2

|D|
2q (11)

where q > 0 and λ > 0.

Remark 1. If we take q = 0 or λ = 0, Eqs. (8)–(11) are the Navier–Stokes equations. Otherwise, we obtain a generalization
of the Navier–Stokes equations, that is frequently used to model non-Newtonian flow. There exists extensive literature on
this subject (see, for example, [14–18]). Eqs. (8)–(11) are also known as Ladyzhenskaya model, and a unique global weak
solution is guaranteed if q ≥ 1/4 (see [1]). We obtain the Smagorinsky model if we take q = 1/2, and choosing the value of
λ properly, we can recover the dissipation predicted by Kolmogorov.

From the above remark, let us consider the effective viscosity given by (11) with q = 1/2 in what follows. Thus, we
introduce the dissipation predicted by Kolmogorov as part of the model, and we shall approach the subgrid-scale stress
tensor in another way (see (21)–(22)).
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