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a b s t r a c t

A local and parallel finite element post-processing scheme based on partition of unity
method is proposed and analyzed in this paper for the Stokes problem. Firstly, a standard
Galerkin finite element method on a relatively coarse grid is used to obtain the approxi-
mation of the lower frequency components. Secondly, the higher frequency components
are computed on fine grids by some local and parallel procedure to post-process the stan-
dard Galerkin approximation. The motivation of the proposed local and parallel finite ele-
ment post-processing scheme is based on the superposition principle. Finally, to eliminate
the effect of the Dirichlet boundary conditions which are imposed on the internal artifi-
cial boundaries, a global coarse grid correction is done to improve the L2-accuracy of the
approximation.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Post-processing and parallel computing are powerful techniques for numerical simulation of solutions to PDEs with high
resolution. In previous works [1–4], Hou presented a two grid post-processing Galerkin method in weakly coupled form by
taking advantage of some system relevant projections. The decomposition of the solution and therefore the solution space
in these papers is based on a new projection defined according to the standard Galerkin approximation in the coarse grid
subspace.

In this paper, by using the ideas of [5,6], a local and parallel finite element post-processing scheme is proposed for the
Stokes problem. The main philosophy behind this paper is that we could treat different scales by different tools. Such idea
was successfully used in the multi-grid, domain decomposition and nonlinear Galerkin methods (see [7–12]). Since the
higher frequency components decay very fast and behave more locally, we can approximate such components by a series
of locally defined approximate residual problems with homogeneous Dirichlet boundary conditions which therefore can be
solved in parallel. Such local and parallel algorithm, to our knowledge, was first proposed in [6] for linear elliptic boundary
value problems and extended to nonlinear elliptic boundary value problems in [13]. Then these local and parallel finite
element algorithmswere extended for the Stokes and Navier–Stokes equations by He et al. [14–16] and Zheng et al. [17–20],
and other equations [21–24]. In particular, Yu et al. [17] proposed one parallel partition finite element for the Stokes problem,
thismethod is developed by combining the local and parallel algorithmwith the partition of unitymethod, that is, they firstly
solved the Stokes problem with the local and parallel algorithm, then used the partition of unity method to collect all the
local solutions to obtain one globally continuous solution. The key issue for constructing local and parallel scheme is to
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localize the post-processing procedure. The technical tool for localization in the previously mentioned references is a local
error estimate for finite element approximations.

In this paper, we follow the basic idea presented in [6] to construct the local and parallel finite element post-processing
scheme. The main difference is the motivation of the proposed method is based on the superposition principle of linear
systems. In multi-grid method, whether linear or nonlinear problems, after getting the global lower frequencies, the higher
frequencies are usually approximated by certain linear residual equations on finer grid. By superposition principle, the
global higher frequency residual equation can be equivalent to the sum of a series of simple independent sub-problems
defined globally, for example, each sub-problem is driven only by free term with a very small support. These sub-problems
can be regarded as certain local ‘‘residual’’ equations. Since the solutions to such sub-problems of ‘‘residual’’, which are
driven by free terms with very small compact supports, approach zero rapidly away from the small compact supports (for
numerical illustration, we refer readers to [5]), we restrict such sub-problems onto some relatively small regions with the
small compact supports of the free terms in them to achieve the localization. Such localization technique is widely used
for elliptic boundary value problems, for example see [5,25] and etc. Besides the local parallel property, the merit of the
proposed method based on superposition principle is that the global post-processing solution is the direct summation of
the lower frequency and every solution to the approximate local ‘‘residual’’ equations. Noticing that each sub-problem is a
linear equation with homogeneous Dirichlet boundary condition, the post-processed solution will keep continuous.

The rest of the paper is organized as follows. In the coming section, some preliminarymaterials are provided. In Section 3,
local and parallel finite element post-processing scheme is constructed. Error estimates in bothH1 and L2 norms are obtained
for the proposed method in Section 4. Finally, some numerical experiments are given to support our analysis in Section 5.

2. Preliminaries

For a bounded domain, we use the standard notation for Sobolev spaces W s,p(Ω) and their associated norms, see, e.g.,
[26,27]. For p = 2, we denote Hs(Ω) = W s,2(Ω) and H1

0 (Ω) = {v ∈ H1(Ω) : v|∂Ω = 0}, ∥ · ∥s,Ω = ∥ · ∥s,2,Ω . In some
places of this paper, ∥ · ∥s,Ω should be viewed as piecewise defined if it is necessary. For convenience, following [12,6],
the symbols ., & and u will be used in this paper. That x1 . y1, x2 & y2 and x3 u y3, mean that x1 ≤ C1y1, x2 ≥ c2y2
and c3x3 ≤ y3 ≤ C3x3 for some constants C1, c2, c3 and C3 that are independent of mesh size. In the following, we denote
by (·, ·) the L2-inner product on Ω . Thus, ∥ · ∥0,Ω = (·, ·)

1
2 and, in H1

0 (Ω), we know that ∥ · ∥1,Ω u ∥∇ · ∥0,Ω . For sub-
domains S1 ⊂ S2 ⊂ Ω , we write S1 ⊂⊂ S2 to mean that dist(∂S2 \ ∂Ω, ∂S1 \ ∂Ω) > 0. The space H−1(Ω)d, the dual of
H1

0 (Ω)
d(d = 2, 3),will also be used. In the rest of this paper, we always use d = 2, 3 to denote the space dimension of the

domainΩ .

2.1. The Stokes equations

We consider the following Stokes equations defined on a smooth domainΩ ⊂ Rd, d = 2, 3:
− △ u + ▽p = f inΩ,

div u = 0 inΩ,
u = 0 on ∂Ω,

(2.1)

where u = (u1, . . . , ud) is the velocity, p is the pressure, f represents the density of body forces.
In order to introduce a variational formulation, we set

a(u, v) = (∇u,∇v) ∀ u, v ∈ H1(Ω)d.

For a given f ∈ H−1(Ω)d, the weak form of (2.1) reads: find a pair of [u, p] ∈ H1
0 (Ω)

d
× L20(Ω) such that

B([u, p]; [v, q]) = (f , v) ∀v ∈ H1
0 (Ω)

d, ∀q ∈ L20(Ω), (2.2)

where

B([u, p]; [v, q]) = a(u, v)− (divv, p)+ (divu, q). (2.3)

Since

a(u, v) = (∇u,∇v) . ∥u∥1∥v∥1,

(divv, p) . ∥v∥1∥p∥0, (divu, q) . ∥u∥1∥q∥0,

we can obtain the bound of B([u, p]; [v, q])with little problem

|B([u, p]; [v, q])| . (∥u∥1 + ∥p∥0)(∥v∥1 + ∥q∥0). (2.4)

It is well known [28–30] that B([u, p]; [v, q]) satisfies the following inf–sup condition with a positive constant β

β(∥u∥1 + ∥p∥0) ≤ sup
[v,q]∈S(Ω)

B([u, p]; [v, q])
∥v∥1 + ∥q∥0

, (2.5)

which implies that problem (2.2) has a unique solution.
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