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a b s t r a c t 

In this paper, we present a significant improvement of the Quick Hypervolume algorithm, one of the 

state-of-the-art algorithms for calculating the exact hypervolume of the space dominated by a set of d- 

dimensional points. This value is often used as the quality indicator in the multiobjective evolutionary 

algorithms and other multiobjective metaheuristics and the efficiency of calculating this indicator is of 

crucial importance especially in the case of large sets or many dimensional objective spaces. We use a 

similar divide and conquer scheme as in the original Quick Hypervolume algorithm, but in our algorithm 

we split the problem into smaller sub-problems in a different way. Through both theoretical analysis 

and a computational study we show that our approach improves the computational complexity of the 

algorithm and practical running times. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

In this paper, we consider the problem of calculating the ex- 

act hypervolume of the space dominated by a set of d-dimensional 

points. This hypervolume is often used as the quality indicator 

in the multiobjective evolutionary algorithms (MOEAs) and other 

multiobjective metaheuristics (MOMHs), where the set of points 

corresponds to images in the objective space of the solutions gen- 

erated by a MOMH. Multiple quality indicators have been proposed 

in the literature, however, the hypervolume indicator has the ad- 

vantage of being compatible with the comparison of approximation 

sets based on the dominance relation (see Zitzler et al., 2003 for 

details) and is one of the most often used indicators. The hypervol- 

ume indicator may be used a posteriori to evaluate the final set of 

solutions generated by a MOMH e.g. for the purpose of a compu- 

tational experiment comparing different algorithms or to tune pa- 

rameters of a MOMH. Some authors proposed also indicator-based 

MOMHs that use the hypervolume to guide the work of the algo- 

rithms ( Jiang et al., 2015; Zitzler and Künzli, 2004 ). 

The exact calculation of the hypervolume may become, how- 

ever, computationally demanding especially in the case of large 

sets in many dimensional objective spaces. Thus the exact cal- 

culation of the hypervolume obtained a significant interest from 

the research community ( Beume et al., 2009; Chan, 2013; Lacour 

et al., 2017; Russo and Francisco, 2014; 2016; While and Bradstreet, 

2012 ). According to the recent study of Lacour et al. (2017) the 

state-of-the-art algorithms for the exact calculation of the hy- 
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pervolume are Quick Hypervolume (QHV) ( Russo and Francisco, 

2014, 2016 ), Hypervolume Box Decomposition Algorithm (HBDA) 

( Lacour et al., 2017 ) and Walking Fish Group algorithm (WFG) 

( While et al., 2012 ). From the theoretical point of view the cur- 

rently most efficient algorithm in the case d ≥ 4 in terms of the 

worst case complexity ( O(n 
d 
3 ) polygon (n ) ) is by Chan (2013) . To 

our knowledge, there is currently, however, no available implemen- 

tation of this approach and no evidence of its practical efficiency 

( Lacour et al., 2017 ). 

In this paper, we improve QHV algorithm by modifying the 

way the problem is split into smaller sub-problems. This modifi- 

cation although may seem relatively simple significantly improves 

the computational complexity of the algorithm and practical run- 

ning times. Since our work is based on relatively recently pub- 

lished results we do not give in this paper an extended overview 

of the applications of the hypervolume indicator and the algo- 

rithms for the hypervolume calculation. Instead we refer an in- 

terested reader to Russo and Francisco (2014) , Russo and Fran- 

cisco (2016) , Beume et al. (2009) , While and Bradstreet (2012) , 

Lacour et al. (2017) and While et al. (2012) for recent overviews 

of this area. 

The paper is organized in the following way. In the next sec- 

tion, we define the problem of the hypervolume calculation. In 

Section 3 , the improved Quick Hypervolume (QHV-II) algorithm is 

proposed. The computational complexity of QHV-II algorithm is an- 

alyzed and compared to QHV in Section 4 . In Section 5 , a computa- 

tional study is presented. The paper finishes with conclusions and 

directions for further research. 
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2. Problem formulation 

Consider a d-dimensional space R 

d that will be interpreted as 

the space of d maximized objectives. 

We say that a point s 1 ∈ R 

d dominates a point s 2 ∈ R 

d if, and 

only if, s 1 
j 
≥ s 2 

j 
∀ j ∈ { 1 , . . . , d} ∧ ∃ j ∈ { 1 , . . . , d} : s 1 

j 
> s 2 

j 
. We denote 

this relation by s 1 �s 2 . 

We will consider hypercuboids in R 

d parallel to the axes, defined 

by two extreme points r ∗ ∈ R 

d and r ∗ ∈ R 

d such that H(r ∗, r ∗) = 

{ s ∈ R 

d | ∀ j ∈ { 1 , . . . , d} r ∗ j ≤ s j ≤ r ∗
j 
} . 

Consider a finite set of points S ⊂ H ( r ∗, r ∗ ). The hypervolume of 

the space dominated by S within hypercuboid H ( r ∗, r ∗ ), denoted by 

H(S, H(r ∗, r ∗)) is the Lebesgue measure of the set 
⋃ 

s ∈ S 
H(s, r ∗) . The 

introduction of r ∗ may seem superfluous since it does not influ- 

ence the hypervolume, however, such definition will facilitate fur- 

ther explanation of the algorithms which are based on the idea of 

splitting the original problem into sub-problems corresponding to 

smaller hypercuboids. 

3. Quick Hypervolume II algorithm 

In this section we propose a modification of the QHV algorithm 

proposed by Russo and Francisco (2014) ; 2016 ). We call this modi- 

fied algorithm QHV-II. Both QHV and QHV-II are based on the fol- 

lowing observations: 

1. ∀ s ′ ∈ S H(S, H(r ∗, r ∗)) = H(s ′ , r ∗) + H 

(( ⋃ 

s ∈ S\{ s ′ } 
H(s, r ∗) 

) \ 

H(s ′ , r ∗) 
)
, i.e. the hypervolume of the space dominated by S 

is equal to the hypervolume of the hypercuboid defined by a 

single point s ′ ∈ S and r ∗ , i.e. H(s ′ , r ∗) , plus the hypervolume 

of the area dominated by the remaining points, i.e. S �{ s ′ } 
excluding the area of hypercuboid H ( s ′ , r ∗ ). 

2. The region H ( r ∗, r ∗ ) �H ( s ′ , r ∗ ) may be defined as a union of non- 

overlapping hypercuboids { H 1 , . . . , H L } . 
3. Consider a point s 1 �∈ H ( r ∗, r ∗ ) ∧ s 1 �r ∗ . The hypervolume of the 

space dominated by s 1 within H ( r ∗, r ∗ ) is equal to the hyper- 

volume of the space dominated by the projection of s 1 onto 

H ( r ∗, r ∗ ). The projection means that the coordinates of the pro- 

jected point larger than the corresponding coordinates of r ∗ are 

replaced by the corresponding coordinates of r ∗. 

The above observations immediately suggest the possibil- 

ity of calculating the hypervolume in a recursive manner with 

Algorithm 1 . The algorithm selects a pivot point, calculates the 

Algorithm 1 General QHV. 

Parameters ↓ : H(r ∗, r ∗) , S ⊂ H(r ∗, r ∗) 

if S contains one or two points then 

Calculate H(S, H(r ∗, r ∗)) using simple geometric properties 

HyperV olume ← H(S, H(r ∗, r ∗)) 
else 

Select a pivot point s ′ ∈ S

HyperV olume ← H(s ′ , r ∗) 
Split H(r ∗, r ∗) \ H(s ′ , r ∗) into a set of non-overlapping hyper- 

cuboids { H 1 , . . . , H L } . 
for all H l ∈ { H 1 , . . . , H L } do 

Construct set S l containing the points dominating r l ∗ and if 

necessary projected onto H l 

HyperV olume ← HyperV olume + QHV (H l , S l ) 

return HyperV olume 

hypervolume of the area dominated by the pivot point, and then 

splits the problem of calculating the remaining hypervolume into 

a number of sub-problems. If the number of points is sufficiently 

small it uses simple geometric properties to calculate the hyper- 

volume. 

Russo and Francisco (2014 , 2016 ) propose to split the region 

H ( r ∗, r ∗ ) �H ( s ′ , r ∗ ) into 2 d − 2 hypercuboids corresponding to each 

possible combination of the comparisons on each objective, where 

a coordinate may be < or ≥ than the corresponding coordinate of 

the pivot point s ′ , with the exception of the two combinations cor- 

responding to the areas dominated and dominating s ′ . Each such 

hypercuboid may be defined by a binary vector where 0 at j th po- 

sition means that s j < s ′ 
j 

and 1 at j th position means that s j ≥ s ′ 
j 
. 

We will call such hypercuboids basic hypercuboids . 

We propose a different splitting scheme. We split the region 

H ( r ∗, r ∗ ) �H ( s ′ , r ∗ ) into d hypercuboids defined in the following way: 

• H 1 is defined by the condition s 1 ≥ s ′ 
1 

• ... 
• H j is defined by the conditions s l < s ′ 

l 
∀ l = 1 , . . . , j − 1 ∧ s j ≥

s ′ 
j 

• ... 

In other words, the hypercuboids are defined not by binary vec- 

tors but by the following schemata of binary vectors: 

• v 1 = 1 ∗ · · · ∗
• ... 
• v i = 0 . . . 01 ∗ · · · ∗, with 1 at j th position 

• ... 
• v d = 0 . . . 01 

where ∗ means any symbol either 0 or 1. Each of these hyper- 

cuboids is obviously an union of a number of the basic hyper- 

cuboids. 

The difference between the splitting schemes in QHV and QHV- 

II is graphically illustrated in Fig. 1 for the 3-objective case. In this 

case, there are 6 basic hypercuboids. The colors describe the hyper- 

cuboids corresponding to the different sub-problems. Please note, 

that in the case of QHV-II the hypercuboid defined by the condi- 

tion s 1 ≥ s ′ 1 contains also the region dominating s ′ but this region 

does not contain any points. In addition, the arrows indicate the 

directions of projections of the points onto the hypercuboids. 

Alike proposed in Russo and Francisco (2014 , 2016 ) as the pivot 

point we select the point s ′ ∈ S with the maximum H(s ′ , r ∗) . 
Please note, that the points projected onto a hypercuboid H l 

may become dominated since some coordinates are replaced with 

lower values. Russo and Francisco (2014 , 2016 ) propose to explic- 

itly remove the dominated points e.g. with the algorithm proposed 

in Bentley (1980) . We do not use this step in QHV-II since we did 

not find it practically beneficial in the preliminary computational 

experiments. Note, however, that alike ( Russo and Francisco, 2014; 

2016 ) we implemented only a naive method for the removal of the 

dominated points by comparing all pairs of points. This could per- 

haps be improved by using more advanced methods. Please note, 

however, that the pivot point s ′ selected in the way described 

above is guaranteed to be non-dominated within S . Furthermore, 

while assigning points to sets S l each point is compared to s ′ and 

the points dominated by s ′ may be removed. It does not guaran- 

tee an immediate removal of all dominated points but finally all 

dominated points will be removed by the algorithm because each 

of the dominated points will be dominated by one of the selected 

pivots or eliminated while using the simple geometric properties 

when the number of points is sufficiently small. 

Please also note, that as suggested in Russo and Francisco (2014 , 

2016 ) the projected points do not need to be constructed explicitly, 

but their coordinates may be calculated on demand to reduce the 

memory requirements. 
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