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a b s t r a c t 

We consider a generic maximum flow interdiction problem that involves a leader and a follower who 

take actions in sequence. Given an interdiction budget, the leader destroys a subset of arcs to minimize 

the follower’s maximum flows from a source to a sink node. The effect from an interdiction action taken 

on each arc is random, following a given success rate of decreasing the arc’s capacity to zero. The fol- 

lower can add additional arc capacities for mitigating flow losses, after knowing the leader’s interdiction 

plan but before realizing the uncertainty. We consider risk-neutral and risk-averse behaviors of the two 

players and investigate five bi-level/tri-level programming models for different risk-pref erence combina- 

tions. The models incorporate the expectation, left-tail, and right-tail Conditional Value-at-Risk (CVaR) 

as commonly used convex risk measures for evaluating random maximum flows in the leader’s and fol- 

lower’s objectives. We reformulate each model as an equivalent mixed-integer linear program and test 

them on real-world network instances to demonstrate interactions between the leader and the follower 

under various risk-preference settings. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

The concept of a network is widely used to describe and op- 

timize real-world problems ranging from supply chains, telecom- 

munication, transportation, disaster relief, to public health. Sys- 

tems in practice can often be represented by large-scale networks 

with nodes and arcs representing system entities and their inter- 

dependencies, respectively. The maximum flow problem is one of 

the most fundamental and well-studied network flow problems 

( Ahuja et al., 1993 ), where the objective is to generate the maxi- 

mum amount of flows from a given source node (origin) to a sink 

node (destination). 

Network interdiction models are based on Stackelberg games 

( Washburn and Wood, 1995 ) in networks, where one player 

(leader) acts first, and the other player (follower) will act af- 

ter observing the leader’s interdiction decision such as destroying 

nodes or arcs. The related studies originate from military logistics 

(see, e.g., Ghare et al., 1971 ) and have been generalized for vari- 

ous interdiction-related applications, e.g., interdicting smugglers in 

Morton et al. (2007) . In stochastic network interdiction, the in- 

terdiction actions could fail with certain probability and/or net- 
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work parameters such as arc capacity or arc cost could be ran- 

dom. We refer to Cormican et al. (1998) ; Woodruff (2002) and 

Hemmecke et al. (2003) for the representative work on stochas- 

tic network interdiction, to Wood (2010) and Dimitrov and Mor- 

ton (2013) for comprehensive reviews of network interdiction 

problems, and to Lim and Smith (2007) ; Shen (2011) and Song and 

Shen (2016) for integer programming related methods for solving 

two-stage network interdiction models. Song and Shen (2016) also 

proposed risk-averse optimization and chance-constrained integer 

programming models but for shortest path interdiction. 

We consider a stochastic maximum flow interdiction problem, 

where the leader destroys a subset of arcs to minimize the fol- 

lower’s maximum flows that are random due to uncertain arc ca- 

pacities and interdiction effects. The follower has the ability to 

mitigate flow losses after observing the leader’s interdiction plan 

and before the uncertainties are realized. We model the prob- 

lem having three stages: (i) the leader interdicts a subset of arcs 

within a given budget; (ii) the follower adds additional capaci- 

ties to a subset of selected arcs before knowing the realizations 

of uncertainties; and (iii) the follower solves for the maximum 

flows from the source to the sink given the decisions from the 

first two stages and realizations of uncertain parameters. To model 

the problem we use bi-level optimization where one problem is 

embedded (nested) within another (see, e.g., Bard, 1983 ) and tri- 
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level optimization which involves three levels of nested problems. 

In our problem context the follower’s arc recovery and flow max- 

imization problems are nested within the leader’s arc interdiction 

optimization problem. Depending on whether or not we can de- 

termine the follower’s optimal decisions by solving a single-level 

model, we formulate the overall leader-follower game as a bi- 

level or a tri-level program. We refer the interested readers to 

Colson et al. (2005) and Bard (1998) for comprehensive surveys 

of bi-level programming models, solution algorithms, and applica- 

tions, and to Vicente and Calamai (1994) for a bibliography review 

of bi-level and multi-level programming. 

According to the leader’s and the follower’s risk preferences, we 

discuss five maximum flow interdiction cases, propose a bi-/tri- 

level programming model for each case, and reformulate them as 

single-level Mixed-Integer Linear Programming (MILP) models that 

can be directly solved by off-the-shelf solvers. Through computa- 

tional analysis, we show that it is meaningful to consider follower’s 

ability of recovering some arc capacities and to classify risk pref- 

erences of the players, since the two factors have significant im- 

pacts on the leader’s optimal interdiction strategy. We also analyze 

the performance of the leader’s interdiction solutions and effects 

of the follower’s recovery solutions under various combinations of 

risk behavior of the two players. Via extensive computational ex- 

periments, we show that the follower being risk averse improves 

the follower’s worst-case maximum flows with insignificant reduc- 

tions of the average and the best-case maximum flows. One can 

choose the most suitable model based on specific goals and inter- 

diction contexts in related applications. 

The following papers are the most relevant to our work 

but the authors discuss different maximum flow interdiction 

cases, assumptions, and variants. Royset and Wood (2007) stud- 

ied a bi-objective maximum flow interdiction problem and found 

Pareto-optimal solutions to minimize the interdiction cost and 

the follower’s maximum flows. They employed Lagrangian relax- 

ation and a branch-and-bound algorithm for identifying solutions. 

Altner et al. (2010) proposed valid inequalities and analyzed in- 

tegrality gaps for optimizing a generic maximum flow interdiction 

problem with binary interdiction decisions. Akgün et al. (2011) and 

Lim and Smith (2007) considered problems of interdicting multi- 

terminal maximum flows. They employed integer programming 

models, partitioning algorithms, and heuristic approaches to opti- 

mize diverse problem variants. 

In the literature on stochastic network interdiction, researchers 

have dominantly considered a risk-neutral leader who aims to 

minimize the follower’s expected maximum flow. In such a set- 

ting, approaches based on Benders decomposition can be applied 

for solving the bi-level programs. The follower is usually assumed 

to only passively “accept” the leader’s interdiction and make “wait- 

and-see” decisions to generate flows from the origin to the desti- 

nation after observing the outcome of uncertain arc capacities and 

interdiction effects. Janjarassuk and Linderoth (2008) studied such 

a generic setting but with the follower being unable to recover arc 

capacities after observing the leader’s interdiction plan. They only 

considered a risk-neutral leader who minimizes the expected value 

of the maximum flow generated by a wait-and-see follower. Their 

model is a special case of one of our models with a risk-neutral 

leader when the follower’s recovery budget is zero. 

In many real-world applications, the leader may not completely 

rely on the expected value of the follower’s decision outcome. A 

risk-averse leader may focus on the follower’s maximum flows in 

the extreme cases (e.g., the best-case or the worst-case flows that 

the follower is able to send). Also, the follower may not act pas- 

sively and may possess ability to mitigate flow losses. If the fol- 

lower can take recovery actions before knowing realizations of the 

uncertainties, then the leader also needs to take the follower’s risk 

preference into consideration when deciding which arcs to inter- 

dict. To the best of our knowledge, we are the first to investigate 

combinations of both risk-neutral and risk-averse behavior of the 

leader and the follower in the context of stochastic maximum flow 

interdiction. A risk-averse follower seeks maximum flows that re- 

main larger than a certain threshold in the worst-case percentile, 

while a risk-averse leader tries to make sure that the follower’s 

maximum flows are not too significant in the best-case percentile. 

The leader may also try to minimize the maximum flows in the 

follower’s worst-case percentile and in such a case we have a zero- 

sum game, which refers to the situation that each player’s gain (or 

loss) of utility is exactly balanced by the losses (or gains) of the 

utility of the other player (see Washburn and Wood, 1995 ). 

The remainder of the paper is organized as follows. In 

Section 2 we present a generic maximum flow interdiction model 

where the follower has the option of recovering arc capacities af- 

ter knowing the leader’s interdiction plan. We extend the model by 

allowing different risk preferences for the two players and formu- 

late bi-level or tri-level programming models for five cases of rep- 

resentative combinations. In Section 3 we derive MILP reformula- 

tions of the five models. In Section 4 we conduct numerical tests of 

randomly generated instances based on real-world network struc- 

tures. We provide thorough solution analysis and demonstrate out- 

of-sample test results. In Section 5 we summarize the paper and 

propose future research directions. 

2. Maximum flow interdiction under diverse risk preferences 

We consider maximum flow interdiction in a directed network 

G = (V , A ) with V representing a set of nodes and A ⊆ V × V rep- 

resenting a set of arcs, { 1 , . . . , |A|} . Each arc (i, j) ∈ A has a non- 

negative capacity u ij and we designate nodes s, t ∈ V as the origin 

and destination in the follower’s maximum flow problem, respec- 

tively. 

We define a binary variable x ij ∈ {0, 1} for each arc (i, j) ∈ A , 

such that x i j = 1 if the leader destroys arc ( i , j ) and 0 otherwise. 

Vector x ∈ { 0 , 1 } |A| denotes the leader’s interdiction decision. The 

interdiction cost is given by parameter r ∈ R 

|A| 
+ and r 0 ∈ R + is the 

total budget for interdicting arcs. The leader’s feasible region is de- 

fined as 

X := { x ∈ { 0 , 1 } |A| | r � x ≤ r 0 } . (1) 

The leader aims to minimize the follower’s maximum flows from s 

to t by optimizing x ∈ X . In a stochastic setting, we consider ran- 

dom arc capacities represented by a vector ˜ u ∈ R 

|A| 
+ . A success- 

fully interdicted arc (i, j) ∈ A will have zero capacity. However 

the leader’s interdiction on each arc may not be successful and 

a random parameter vector ˜ ξ ∈ { 0 , 1 } |A| indicates whether or not 

an interdiction is successful on each arc. We employ the Sam- 

ple Average Approximation (SAA) method, which is a common 

approach for solving stochastic programs with random parame- 

ters by reducing the scenario set to a manageable size (see, e.g., 

Birge and Louveaux, 2011, Shapiro et al., 2009 ). In this approach, 

we use Monte Carlo sampling to generate a finite set of scenar- 

ios, K = { 1 , . . . , |K|} , following some given distribution of the un- 

certain parameter ( ̃  u , ˜ ξ ) . We denote ( u k , ξ k ) as the realization of 

( ̃  u , ˜ ξ ) in each sample k ∈ K, where u k = (u k 
i j 
, (i, j) ∈ A ) T ∈ R 

|A| 
+ and 

ξ k = (ξ k 
i j 
, (i, j) ∈ A ) T ∈ { 0 , 1 } |A| . Let p k be the probability associ- 

ated with scenario k ∈ K and we have 
∑ 

k ∈K p k = 1 . 

After the leader’s interdiction, the follower adds additional ca- 

pacities to a subset of arcs subject to a recovery budget. We de- 

fine a continuous variable h ij ≥ 0 as the added capacity to arc ( i , 

j ) and denote h 0 as the total budget for allocating capacities. We 

use h ∈ R 

|A| 
+ to denote the follower’s recovery decision, and the fol- 



Download English Version:

https://daneshyari.com/en/article/4958865

Download Persian Version:

https://daneshyari.com/article/4958865

Daneshyari.com

https://daneshyari.com/en/article/4958865
https://daneshyari.com/article/4958865
https://daneshyari.com

