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a b s t r a c t 

We consider a flow shop type manufacturing cell consisting of m machines and a material handling robot 

producing multiple parts. The robot transfers the parts between the machines and loads/unloads the ma- 

chines. We consider the cyclic scheduling of the parts and the robot moves with the objective of maxi- 

mizing the throughput rate. We develop a mixed integer linear programming formulation of the problem. 

The formulation is improved with several valid inequalities and reformulations of the constraints. We also 

develop a hybrid metaheuristic algorithm for this strongly NP-Hard problem. The algorithm is modified 

to handle both 1-unit and multi-unit robot cycles. Multi-threading is used to parallelize the algorithm in 

order to improve its efficiency. After calibrating the parameters of the heuristic algorithm, an extensive 

computational study is performed to evaluate its performance. The results of this study revealed that 

the developed heuristic provides near-optimal solutions in reasonable solution times. The effects of par- 

allelization and the benefits of considering multi-unit cycles instead of 1-unit cycles are also quantified. 

Our computational tests show that multi-unit cycles improve the throughput rate by 9% on the average. 

The improvement can reach to 20% depending on the problem parameters. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

The use of industrial robots increases continuously among 

the manufacturing firms. According to Robotic Industries Associ- 

ation, 14,583 robots valued at $ 817 million were ordered from 

North American robotics companies in the first half of 2016, an 

increase of two percent in units over the same period in 2015 

( Robotics Online, 2016 ). The companies utilize industrial robots in 

order to increase productivity, safety, product quality, consistency, 

and flexibility. However, in order to get the maximum benefit from 

this high-cost investment, some complex operational problems 

must be solved. One of the most important operational problems 

is the sequencing and scheduling of the parts to be processed 

and the robot moves. In this study, we consider a flow shop type 

production system that consists of an input device denoted by 

M 0 , a number of machines denoted by M 1 , . . . , M m 

, an output 

device denoted by M m +1 , and a material handling robot as can be 

seen in Fig. 1 . Such a production system is called a robotic cell. 

Multiple parts with different processing times are to be processed 

in this cell. The problem is to determine the part sequence and 

the robot move sequence that jointly maximize the throughput or 
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equivalently minimize the cycle time. The cycle time is defined as 

the long run average time to produce a single part. 

Such cells are used in many diverse industries including semi- 

conductor manufacturing, printed circuit boards, glass products, 

textile mills and engine block manufacturing as reported in 

Dawande et al. (2007) . Sethi et al. (1992) provided a real-life ap- 

plication that consists of two drilling and one boring machines and 

a single robot. The cell produces same or different castings to be 

used in truck differential assemblies. In another real-life applica- 

tion provided by Dawande et al. (2007) , 28 varieties of hydraulic 

pump cover castings are produced through milling, rough and fin- 

ish boring, drilling, and facing operations in a robotic cell. In the 

literature mostly the makespan and the cycle time minimization 

objectives are considered for robotic cells. In the makespan min- 

imization case, it is assumed that the production is not repeti- 

tive. All machines are initially idle, a specific number of parts are 

to be processed, and at the end, all machines become idle again. 

Soukhal and Martineau (2005) developed an integer programming 

model and a Genetic Algorithm (GA) based heuristic for this prob- 

lem. Carlier et al. (2010) proposed an exact branch-and-bound al- 

gorithm and developed a GA. Elmi and Topaloglu (2014) consid- 

ered a hybrid flow shop type robotic cell in which there are differ- 

ent speed parallel machines at each stage. They developed an in- 

teger programming formulation and proposed a Simulated Anneal- 

ing (SA) based algorithm. Liu and Kozan (2016) considered the job 
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Fig. 1. Robotic cell. 

shop version of the problem and developed a hybrid metaheuristic 

algorithm. 

In the cycle time minimization case, it is assumed that the 

same set of parts is to be processed indefinitely. Therefore, the 

system is not required to start with an empty state in which all 

machines are idle. The state of the system can be identified with 

the position of the robot and the status of all machines (whether 

they are idle or loaded with a part). In order to satisfy repetitive- 

ness, the final state of a cycle must be identical to its initial state. 

Such cyclic schedules are used extensively especially in mass pro- 

duction where the same set of parts are produced in large volumes 

or in the case of high demand diversity ( Bo ̇zejko et al., 2015 ). In 

the latter case, a certain mix of items is produced in fixed intervals 

of time, cycle time. In a robotic cell, cyclic production refers to 

the repetition of the same sequence of robot moves indefinitely. 

Cyclic schedules are easy to implement and control for real life 

applications. Furthermore, Geismar et al. (2005) proved that such 

schedules are optimal for robotic flow shops producing identical 

parts. Sethi et al. (1992) defined an n-unit cycle as a sequence of 

robot activities in which the system returns to the same state after 

producing n parts. In these cycles, each machine is loaded and 

unloaded exactly n times and n parts are produced at the end. 

Most studies on robotic cell scheduling problems assume the 

parts to be identical. With this assumption, the part sequencing 

problem vanishes and the robot move sequencing remains as the 

only problem. Sethi et al. (1992) proved that 1-unit cycles are op- 

timal for two-machine cells producing identical parts. Crama and 

van de Klundert (1997) extended this result for three-machine 

cells. However, for m -machine cells where m ≥ 4, Brauner and 

Finke (2001) showed that a multi-unit cycle can lead to a cycle 

time that is smaller than the smallest 1-unit cycle time. There are 

several studies that consider multi-unit cycles and develop exact 

or heuristic solution procedures for the identical parts case (see 

e.g. Kats et al., 1999; Che et al., 2011; Zhou et al., 2012; Li and 

Fung, 2014; Elmi and Topaloglu, 2016 ). 

In the multiple part-types case, the repetitive production of 

a Minimal Part Set (MPS) is considered. An MPS is the smallest 

possible set of parts having the same proportions as the pro- 

duction target. For example, if the demands for three products 

for some fixed period of time are given as 400 for product A, 

250 for product B, and 150 for product C, then the MPS consists 

of 8 product A’s, 5 product B’s, and 3 product C’s that makes a 

total of 16 products. Given an MPS of n parts, an MPS cycle is 

equivalent to an n -unit robot move cycle. The cycle time can be 

defined as the total time to produce all n parts in the MPS. We 

utilize this definition of the cycle time throughout this study,. 

The per unit cycle time can be found easily by dividing this total 

time by n . A Concatenated Robot Move (CRM) cycle is a special 

class of MPS cycles in which the same 1-unit cycle is repeated 

n times ( Sriskandarajah et al., 2004 ). The reason for considering 

CRM cycles lies in the easiness of implementation and control 

of these cycles. In most studies in the literature, the robot move 

sequence is fixed to a specific CRM cycle and the corresponding 

optimal part sequence is determined accordingly ( Dawande et al., 

2007 ). Sethi et al. (1992) solved the part sequencing problem for 

a given CRM cycle in a two-machine cell. Hall et al. (1998) proved 

that finding the optimal part sequence in two of the six possible 

CRM cycles in a three-machine robotic cell is strongly NP-Hard. 

Sriskandarajah et al. (1998) generalized these results for the 

m -machine cells and categorized the part sequencing problem for 

the CRM cycles into four categories depending on their complexity 

status. Kamalabadi et al. (2008) considered the part sequencing 

problem when the CRM cycle is fixed in a three-machine robotic 

cell and proposed a Particle Swarm Optimization (PSO) method. 

Abdulkader et al. (2013) considered the same problem in a four- 

machine robotic cell and proposed a GA. On the other hand, 

Hall et al. (1997) proved that the optimal cycle is not generally 

a CRM cycle even for the two-machine cells. They developed an 

algorithm with O( n 4 ) complexity to determine the optimal MPS cy- 

cle for the two-machine case. Aneja and Kamoun (1999) improved 

the time complexity to O ( nlogn ) by formulating the problem as a 

special case of the Traveling Salesman Problem (TSP) . However, the 

problem is strongly NP-Hard for the m -machine robotic cells when 

m ≥ 3 and the robot sequence is not fixed ( Hall et al., 1998 ). 

Zahrouni and Kamoun (2012) developed a constructive heuris- 

tic inspired by the NEH algorithm of Nawaz et al. (1983) for 

the three-machine case. Batur et al. (2012) formulated the two- 

machine problem in which the processing times are also decision 

variables as a variation of the TSP. Since the model size increases 

drastically with respect to m , extending this formulation to the m - 

machine case is not practical. Fazel Zarandi et al. (2013) developed 

a branch and bound algorithm and proposed an SA algorithm for 

the two-machine case that includes sequence-dependent setup 

times. Che et al. (2010) considered the cyclic hoist scheduling with 

multiple parts, fixed processing times, and no-wait constraints. 

They developed an MILP formulation which makes use of the 

no-wait constraints and developed a dynamic branch and bound 

procedure. Lei et al. (2014) considered the cyclic scheduling of 

multiple parts and the robot where the process times on the 

machines must satisfy time-window constraints. That is, the actual 

process time of part j on machine i must be within the interval 

[ a ij , b ij ]. Note that, if b ij is set to ∞ , time window constraints 

become identical with the current study. For the problem, the 

authors developed an MILP formulation with the assumption that 

the part sequence is given. They made use of this formulation to 

develop a Branch and Bound (B&B) procedure where all possible 

part sequences are enumerated to determine the optimal MPS 

schedule. This procedure reduces the solution time for this com- 

plex problem. However, it can only solve instances with a smaller 

number of machines and parts in reasonable times. Test results 

with only 2 and 3 different parts are performed in that study 

where 2 parts and 18 machines take 3.8 seconds whereas 3 parts 

and 18 machines take 2242.6 seconds on a machine with 3.0 GHZ 

Pentium IV processor. This drastic increase in the solution times 
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