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a b s t r a c t 

In this paper, we describe and compare serial, parallel, and distributed solver implementations for large 

batches of Traveling Salesman Problems using the Lin–Kernighan Heuristic (LKH) and the Concorde exact 

TSP Solver. Parallel and distributed solver implementations are useful when many medium to large size 

TSP instances must be solved simultaneously. These implementations are found to be straightforward 

and highly efficient compared to serial implementations. Our results indicate that parallel computing 

using hyper-threading for solving 150- and 200-city TSPs can increase the overall utilization of computer 

resources up to 25% compared to single thread computing. The resulting speed-up/physical core ratios 

are as much as ten times better than a parallel and concurrent version of the LKH heuristic using SPC 3 

in the literature. For variable TSP sizes, a longest processing time first heuristic performs better than an 

equal distribution rule. We illustrate our approach with an application in the design of order picking 

warehouses. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

With the arrival of multi-core processors in 2005, comput- 

ers gained more power by providing more clock cycles per CPU. 

However, most software implementations are still inefficient sin- 

gle processor programs ( Ismail et al., 2011 ). Writing an efficient 

and scalable parallel program is a complex task. However, C# par- 

allel libraries provide the power of parallel computing with sim- 

ple changes in the implementation if a certain condition is met: 

the steps inside the operation must be independent (i.e., they 

must not write to memory locations or files that are accessed by 

other steps). Solving large batches of Traveling Salesman Problems 

is an example of such independent operations. Each TSP instance 

can be solved by calling a TSP Solver in parallel. Applications of 

large batches of TSPs include design of order picking warehouses 

( Ozden et al., 2017 ), large scale distribution network simulation 

( Kubota et al., 1999; Sakurai et al., 2006 ), case-based reasoning for 

repetitive TSPs ( Kraay and Harker, 1997 ), and delivery route opti- 

mization ( Sakurai et al., 2011 ). In these applications the TSP solving 

consumes most of the computational effort. 

We use both the Lin–Kernighan Heuristic (LKH) and the Con- 

corde exact TSP Solver (Concorde). The methods we describe are 
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applicable to optimization problems that must be solved repeti- 

tively in an overall algorithm. In this paper, we present two exam- 

ple problems that solve large batches of TSPs and give implemen- 

tation details in the context of warehouse design for order pick- 

ing operations. The main result of this paper is to show that doing 

the parallelism at the TSP level instead of the TSP Solvers’ imple- 

mentation level ( Ismail et al., 2011 ) provides better CPU utilization. 

A parallel implementation generally achieves better CPU execution 

times than serial implementations, but an improved CPU utiliza- 

tion is not easily achievable. To the best of our knowledge, this 

is the first work that presents CPU utilizations for solving large 

batches of TSPs in serial, parallel, and distributed computing en- 

vironments. 

This work is organized as follows. In Section 2 we give a tech- 

nical description of the Traveling Salesman Problem (TSP) with 

solution techniques and its variant of large batches of Travel- 

ing Salesman Problems. In Section 3 , we describe our implemen- 

tation of serial, parallel, and distributed large batches of TSPs 

solvers. In Section 4 we present the computational results, and in 

Section 5 we offer conclusions. 

2. Traveling salesman problem and solution techniques 

The Traveling Salesman Problem (TSP) is an NP-hard ( Garey and 

Johnson, 1979 ) combinatorial optimization problem where a sales- 

man has to visit n cities only once and then return to the 
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starting city with minimum travel cost (or travel distance). It is 

one the most famous and widely studied combinatorial problems 

( Rocki and Suda, 2013 ). Solving the problem with a brute force ap- 

proach requires a factorial execution time O ( n !) by permuting all 

the possible tours through n cities and therefore checking (n − 1)! 

possible tours. Given a starting city, there can be n − 1 choices for 

the second city, n − 2 choices for the third city, and so on. In the 

symmetric TSP, the number of possible solutions is halved because 

every sequence has the same distance when traveled in reverse or- 

der. If n is only 20, there are approximately 10 18 possible tours. In 

the asymmetric TSP, costs on an arc might depend on the direction 

of travel (streets might be one way or traffic might be considered). 

Using an integer linear programming formulation ( Ismail et al., 

2011 ), the TSP can be defined as: 

min 

∑ 

i ∈ V 

∑ 

j∈ V 
c i j x i j (1) 

∑ 

j∈ V 
x i j = 1 , i ∈ V (2) 

∑ 

i ∈ V 
x i j = 1 , j ∈ V (3) 

∑ 

i ∈ S 

∑ 

j∈ S 
x i j ≤ | S| − 1 , ∀ S ⊂ V, S � = ∅ (4) 

x i j ∈ { 0 , 1 } , ∀ i, j ∈ V (5) 

where x i j = 1 if the path goes from city i to city j and 0 otherwise. 

V is a set of cities, S is a subset of V , and c ij is the cost of moving 

from city i to city j . The first set of equalities enforces that each 

city be arrived at from exactly one city, and the second set enforces 

that from each city there is a departure to exactly one other city. 

The third set of constraints ensures that a single tour is created 

which spans all cities. 

TSP is a widely studied problem where solution methods can be 

classified as Exact Algorithms, TSP Heuristics, or Meta-Heuristics. 

Exact algorithms are guaranteed to find an optimal solution in a 

bounded number of steps. Enumeration is only good for solving 

small instances up to 10 cities. The dynamic programming algo- 

rithm of Held and Karp (1962) and the branch-and-bound algo- 

rithm are some well known algorithms in this class. They are good 

for solving instances up to 60 cities. Concorde is a code for solv- 

ing symmetric TSPs and related network optimization problems 

exactly using branch-and-bound and problem specific branch-and- 

cut techniques ( Applegate et al., 2007; Cook, 2014 ). This algorithm 

is the current exact method of choice for solving large instances. 

Concorde was able to solve a 85,900-city problem in TSPLIB (2013) . 

Heuristics are used when the problem is large and a solution 

is needed in a limited amount of time. We can categorize these 

heuristics into two groups: “constructive heuristics” and “improve- 

ment heuristics.” Constructive heuristics start with an empty tour 

and repeatedly extend the tour until it is complete. The most 

popular constructive heuristic is the nearest neighbor algorithm, 

where the salesman chooses the nearest unvisited city as the next 

move and finally returns to the first city. Improvement heuristics 

start with a complete tour and then try to improve it with lo- 

cal moves. The most popular and easily implementable heuristic 

is the pairwise exchange, or 2 − opt, which iteratively removes 

two edges and replaces them with two different edges to obtain a 

shorter tour. The algorithm continues until no more improvement 

is possible. k − opt is a generalization which forms the basis of 

one of the most effective heuristics for solving the symmetric TSP, 

the Lin and Kernighan (1973) . k − opt is based on the concept of 

k − opt imalit y : “A tour is said to be k − optimal if it is impossi- 

ble to obtain a shorter tour by replacing any k of its links by any 

other set of k links” ( Helsgaun, 20 0 0 ). For a more detailed review 

of these algorithms refer to Helsgaun (20 0 0) . 

Meta-heuristic algorithms are designed for solving a prob- 

lem more quickly than exact algorithms but are not specifi- 

cally designed for any particular problem class. Most of these 

meta-heuristics implement some form of stochastic optimiza- 

tion. The solution is dependent on the set of random numbers 

generated. Meta-heuristics’ ability to find their way out of lo- 

cal optima contributes to their current popularity. Specific meta- 

heuristics used for solving the TSP include simulated annealing 

( Kirkpatrick, 1984 ), genetic algorithms ( Grefenstette et al., 1985 ), 

tabu search ( Knox, 1994 ), ant colony optimization ( Dorigo and 

Gambardella, 1997 ), iterated local search ( Lourenço et al., 2003 ), 

particle swarm optimization ( Shi et al., 2007 ), nested partitions 

( Shi et al., 1999 ), and neural networks ( Angeniol et al., 1988 ). There 

are many variants and hybrids of these meta-heuristics designed to 

solve the TSP ( Lazarova and Borovska, 2008 ). 

2.1. Parallel/distributed implementations 

The algorithms mentioned in this section solve a single TSP us- 

ing parallel/distributed techniques. A parallel and concurrent ver- 

sion of the Lin–Kernighan–Helsgaun heuristic using SPC 

3 program- 

ming is implemented in Ismail et al. (2011) . SPC 

3 is a newly de- 

veloped parallel programming model (Serial, Parallel, and Con- 

current Core to Core Programming Model) developed for multi- 

core processors. Developers can easily write new parallel code or 

convert existing code written for a single processor. All of their 

speed-ups were less than 2 times compared to single thread runs, 

even when using a 24-core machine. The computational time of 

each individual task parallelized was insignificantly small, there- 

fore the overhead of the parallelization prevented achievement 

close to the theoretical boundaries of the speed-up ( MSDN, 2016c ). 

In Aziz et al. (2009) , a sequential algorithm is developed for solv- 

ing TSP and converted into a parallel algorithm by integrating it 

with the Message Passing Interface (MPI) libraries. The authors use 

a dynamic two dimensional array and store the costs of all possible 

paths. They decompose the task of filling this 2D array into subrou- 

tines to parallelize the algorithm using MPI. The Message Passing 

Interface provides the subroutines needed to decompose the tasks 

involved in the TSP solving process into subproblems that can be 

distributed among the available nodes for processing. Experimen- 

tal results conducted on a Beowulf cluster show that their speed- 

ups were less than 3.5 times on a 32 processor cluster. Another 

technique to implement parallel heuristics for the geometric TSP 

(symmetric and Euclidean distances between cities), called the di- 

vide and conquer strategy, is proposed in Cesari (1996) . This ref- 

erence subdivides the set of cities into smaller sets and computes 

an optimal subtour for each subset. Each subtour is then combined 

to obtain the tour for the entire problem. The author was able to 

achieve between 3.0 and 7.2 times speed-up on a 16 core machine. 

2.2. Large batches of traveling salesman problems 

Solving a single TSP gives the best path for a certain instance. 

However, this assumes that the location of the cities (visited 

points) are fixed. In situations where the problem consists of find- 

ing the optimal locations of these cities (visited points), numerous 

TSPs must be solved to assess a certain design, (e.g, a warehouse 

layout or a distribution network). Large batches of TSPs are differ- 

ent from the multiple traveling salesman problem (mTSP) which 

consists of determining a set of routes for m salesmen who all 

start from and return back to a depot. In large batches of TSPs, 

to find the expected distance traveled (or another relevant statistic 
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