
Computers and Operations Research 85 (2017) 87–96

Contents lists available at ScienceDirect

Computers and Operations Research

journal homepage: www.elsevier.com/locate/cor

Solving large batches of traveling salesman problems with parallel and

distributed computing

S.G. Ozden

a , A.E. Smith

a , ∗, K.R. Gue

b

a Department of Industrial & Systems Engineering, Auburn University, Auburn, AL 36849, USA
b Department of Industrial Engineering, University of Louisville, Louisville, KY 40292, USA

a r t i c l e i n f o

Article history:

Received 13 September 2016

Revised 21 February 2017

Accepted 2 April 2017

Available online 6 April 2017

Keywords:

TSP

Parallel computing

Routing

Distributed computing

Facilities design

a b s t r a c t

In this paper, we describe and compare serial, parallel, and distributed solver implementations for large

batches of Traveling Salesman Problems using the Lin–Kernighan Heuristic (LKH) and the Concorde exact

TSP Solver. Parallel and distributed solver implementations are useful when many medium to large size

TSP instances must be solved simultaneously. These implementations are found to be straightforward

and highly efficient compared to serial implementations. Our results indicate that parallel computing

using hyper-threading for solving 150- and 200-city TSPs can increase the overall utilization of computer

resources up to 25% compared to single thread computing. The resulting speed-up/physical core ratios

are as much as ten times better than a parallel and concurrent version of the LKH heuristic using SPC 3

in the literature. For variable TSP sizes, a longest processing time first heuristic performs better than an

equal distribution rule. We illustrate our approach with an application in the design of order picking

warehouses.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

With the arrival of multi-core processors in 2005, comput-

ers gained more power by providing more clock cycles per CPU.

However, most software implementations are still inefficient sin-

gle processor programs (Ismail et al., 2011). Writing an efficient

and scalable parallel program is a complex task. However, C# par-

allel libraries provide the power of parallel computing with sim-

ple changes in the implementation if a certain condition is met:

the steps inside the operation must be independent (i.e., they

must not write to memory locations or files that are accessed by

other steps). Solving large batches of Traveling Salesman Problems

is an example of such independent operations. Each TSP instance

can be solved by calling a TSP Solver in parallel. Applications of

large batches of TSPs include design of order picking warehouses

(Ozden et al., 2017), large scale distribution network simulation

(Kubota et al., 1999; Sakurai et al., 2006), case-based reasoning for

repetitive TSPs (Kraay and Harker, 1997), and delivery route opti-

mization (Sakurai et al., 2011). In these applications the TSP solving

consumes most of the computational effort.

We use both the Lin–Kernighan Heuristic (LKH) and the Con-

corde exact TSP Solver (Concorde). The methods we describe are

∗ Corresponding author.

E-mail addresses: gokhan@auburn.edu (S.G. Ozden), smithae@auburn.edu (A.E.

Smith), kevin.gue@louisville.edu (K.R. Gue).

applicable to optimization problems that must be solved repeti-

tively in an overall algorithm. In this paper, we present two exam-

ple problems that solve large batches of TSPs and give implemen-

tation details in the context of warehouse design for order pick-

ing operations. The main result of this paper is to show that doing

the parallelism at the TSP level instead of the TSP Solvers’ imple-

mentation level (Ismail et al., 2011) provides better CPU utilization.

A parallel implementation generally achieves better CPU execution

times than serial implementations, but an improved CPU utiliza-

tion is not easily achievable. To the best of our knowledge, this

is the first work that presents CPU utilizations for solving large

batches of TSPs in serial, parallel, and distributed computing en-

vironments.

This work is organized as follows. In Section 2 we give a tech-

nical description of the Traveling Salesman Problem (TSP) with

solution techniques and its variant of large batches of Travel-

ing Salesman Problems. In Section 3 , we describe our implemen-

tation of serial, parallel, and distributed large batches of TSPs

solvers. In Section 4 we present the computational results, and in

Section 5 we offer conclusions.

2. Traveling salesman problem and solution techniques

The Traveling Salesman Problem (TSP) is an NP-hard (Garey and

Johnson, 1979) combinatorial optimization problem where a sales-

man has to visit n cities only once and then return to the

http://dx.doi.org/10.1016/j.cor.2017.04.001

0305-0548/© 2017 Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.cor.2017.04.001
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2017.04.001&domain=pdf
mailto:gokhan@auburn.edu
mailto:smithae@auburn.edu
mailto:kevin.gue@louisville.edu
http://dx.doi.org/10.1016/j.cor.2017.04.001

88 S.G. Ozden et al. / Computers and Operations Research 85 (2017) 87–96

starting city with minimum travel cost (or travel distance). It is

one the most famous and widely studied combinatorial problems

(Rocki and Suda, 2013). Solving the problem with a brute force ap-

proach requires a factorial execution time O (n !) by permuting all

the possible tours through n cities and therefore checking (n − 1)!

possible tours. Given a starting city, there can be n − 1 choices for

the second city, n − 2 choices for the third city, and so on. In the

symmetric TSP, the number of possible solutions is halved because

every sequence has the same distance when traveled in reverse or-

der. If n is only 20, there are approximately 10 18 possible tours. In

the asymmetric TSP, costs on an arc might depend on the direction

of travel (streets might be one way or traffic might be considered).

Using an integer linear programming formulation (Ismail et al.,

2011), the TSP can be defined as:

min

∑

i ∈ V

∑

j∈ V
c i j x i j (1)

∑

j∈ V
x i j = 1 , i ∈ V (2)

∑

i ∈ V
x i j = 1 , j ∈ V (3)

∑

i ∈ S

∑

j∈ S
x i j ≤ | S| − 1 , ∀ S ⊂ V, S � = ∅ (4)

x i j ∈ { 0 , 1 } , ∀ i, j ∈ V (5)

where x i j = 1 if the path goes from city i to city j and 0 otherwise.

V is a set of cities, S is a subset of V , and c ij is the cost of moving

from city i to city j . The first set of equalities enforces that each

city be arrived at from exactly one city, and the second set enforces

that from each city there is a departure to exactly one other city.

The third set of constraints ensures that a single tour is created

which spans all cities.

TSP is a widely studied problem where solution methods can be

classified as Exact Algorithms, TSP Heuristics, or Meta-Heuristics.

Exact algorithms are guaranteed to find an optimal solution in a

bounded number of steps. Enumeration is only good for solving

small instances up to 10 cities. The dynamic programming algo-

rithm of Held and Karp (1962) and the branch-and-bound algo-

rithm are some well known algorithms in this class. They are good

for solving instances up to 60 cities. Concorde is a code for solv-

ing symmetric TSPs and related network optimization problems

exactly using branch-and-bound and problem specific branch-and-

cut techniques (Applegate et al., 2007; Cook, 2014). This algorithm

is the current exact method of choice for solving large instances.

Concorde was able to solve a 85,900-city problem in TSPLIB (2013) .

Heuristics are used when the problem is large and a solution

is needed in a limited amount of time. We can categorize these

heuristics into two groups: “constructive heuristics” and “improve-

ment heuristics.” Constructive heuristics start with an empty tour

and repeatedly extend the tour until it is complete. The most

popular constructive heuristic is the nearest neighbor algorithm,

where the salesman chooses the nearest unvisited city as the next

move and finally returns to the first city. Improvement heuristics

start with a complete tour and then try to improve it with lo-

cal moves. The most popular and easily implementable heuristic

is the pairwise exchange, or 2 − opt, which iteratively removes

two edges and replaces them with two different edges to obtain a

shorter tour. The algorithm continues until no more improvement

is possible. k − opt is a generalization which forms the basis of

one of the most effective heuristics for solving the symmetric TSP,

the Lin and Kernighan (1973) . k − opt is based on the concept of

k − opt imalit y : “A tour is said to be k − optimal if it is impossi-

ble to obtain a shorter tour by replacing any k of its links by any

other set of k links” (Helsgaun, 20 0 0). For a more detailed review

of these algorithms refer to Helsgaun (20 0 0) .

Meta-heuristic algorithms are designed for solving a prob-

lem more quickly than exact algorithms but are not specifi-

cally designed for any particular problem class. Most of these

meta-heuristics implement some form of stochastic optimiza-

tion. The solution is dependent on the set of random numbers

generated. Meta-heuristics’ ability to find their way out of lo-

cal optima contributes to their current popularity. Specific meta-

heuristics used for solving the TSP include simulated annealing

(Kirkpatrick, 1984), genetic algorithms (Grefenstette et al., 1985),

tabu search (Knox, 1994), ant colony optimization (Dorigo and

Gambardella, 1997), iterated local search (Lourenço et al., 2003),

particle swarm optimization (Shi et al., 2007), nested partitions

(Shi et al., 1999), and neural networks (Angeniol et al., 1988). There

are many variants and hybrids of these meta-heuristics designed to

solve the TSP (Lazarova and Borovska, 2008).

2.1. Parallel/distributed implementations

The algorithms mentioned in this section solve a single TSP us-

ing parallel/distributed techniques. A parallel and concurrent ver-

sion of the Lin–Kernighan–Helsgaun heuristic using SPC

3 program-

ming is implemented in Ismail et al. (2011) . SPC

3 is a newly de-

veloped parallel programming model (Serial, Parallel, and Con-

current Core to Core Programming Model) developed for multi-

core processors. Developers can easily write new parallel code or

convert existing code written for a single processor. All of their

speed-ups were less than 2 times compared to single thread runs,

even when using a 24-core machine. The computational time of

each individual task parallelized was insignificantly small, there-

fore the overhead of the parallelization prevented achievement

close to the theoretical boundaries of the speed-up (MSDN, 2016c).

In Aziz et al. (2009) , a sequential algorithm is developed for solv-

ing TSP and converted into a parallel algorithm by integrating it

with the Message Passing Interface (MPI) libraries. The authors use

a dynamic two dimensional array and store the costs of all possible

paths. They decompose the task of filling this 2D array into subrou-

tines to parallelize the algorithm using MPI. The Message Passing

Interface provides the subroutines needed to decompose the tasks

involved in the TSP solving process into subproblems that can be

distributed among the available nodes for processing. Experimen-

tal results conducted on a Beowulf cluster show that their speed-

ups were less than 3.5 times on a 32 processor cluster. Another

technique to implement parallel heuristics for the geometric TSP

(symmetric and Euclidean distances between cities), called the di-

vide and conquer strategy, is proposed in Cesari (1996) . This ref-

erence subdivides the set of cities into smaller sets and computes

an optimal subtour for each subset. Each subtour is then combined

to obtain the tour for the entire problem. The author was able to

achieve between 3.0 and 7.2 times speed-up on a 16 core machine.

2.2. Large batches of traveling salesman problems

Solving a single TSP gives the best path for a certain instance.

However, this assumes that the location of the cities (visited

points) are fixed. In situations where the problem consists of find-

ing the optimal locations of these cities (visited points), numerous

TSPs must be solved to assess a certain design, (e.g, a warehouse

layout or a distribution network). Large batches of TSPs are differ-

ent from the multiple traveling salesman problem (mTSP) which

consists of determining a set of routes for m salesmen who all

start from and return back to a depot. In large batches of TSPs,

to find the expected distance traveled (or another relevant statistic

Download English Version:

https://daneshyari.com/en/article/4958915

Download Persian Version:

https://daneshyari.com/article/4958915

Daneshyari.com

https://daneshyari.com/en/article/4958915
https://daneshyari.com/article/4958915
https://daneshyari.com

