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a b s t r a c t 

Tempelmeier and Hilger (2015) study the stochastic dynamic lot sizing problem with multiple items and 

limited capacity. They propose a linear optimization formulation for the problem based on a piece-wise 

linear approximation of the non-linear functions for the expected backorders and the expected inventory 

on hand. Building on the work of Tempelmeier and Hilger (2015), we correct an erroneous derivation of 

the linear optimization problem and propose an improved model. 

© 2017 Published by Elsevier Ltd. 

1. Introduction 

In this technical note we study the stochastic dynamic ca- 

pacitated lot sizing problem (SCLSP). Contrary to its determinis- 

tic counterpart, demand is assumed to be randomly distributed 

from a known probability distribution, in this case the Normal dis- 

tribution. The problem deals with determining a production plan 

for K items ( k = 1 , 2 , . . . , K) over a finite horizon of T periods 

( t = 1 , 2 , . . . , T ). All items are produced on a single resource with 

limited capacity C t . We assume a forecast is given for each item 

k over the planning horizon in terms of the expected demand 

E [ d kt ] = μd kt 
and the related standard deviation σd kt 

per time pe- 

riod. We consider unfulfilled demand to be put on backorder and 

hence, there are no lost sales. 

Tempelmeier and Hilger (2015) assume the “static uncertainty 

strategy” of Bookbinder and Tan (1988) applies. Based on this as- 

sumption, lot sizes as well as the periods that there is production 

are determined in advance and this production plan is executed 

regardless of the actual demand realizations. 

We show in this technical note that there is an error in the 

derivation of the stochastic model by Tempelmeier and Hilger 

(2015) and if used, would lead to incorrect production plans. 

In the next section we discuss the model as formulated by 
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Tempelmeier and Hilger (2015) and while doing so we point out 

the error. Then we explain how this error can be corrected and 

propose an improved model. 

2. Analysis 

The deterministic counterpart of the capacitated lot sizing prob- 

lem can be formulated as in Problem 1 . 

Problem 1 (CLSP) . 

min. 

T ∑ 

t=1 

K ∑ 

k =1 

(s c k γkt + h 

c 
k I kt ) (1) 

s.t. I kt = I k,t−1 + q kt − d kt ∀ k, t (2) 

∑ 

k ∈K 
t p 

k 
q kt + t s k γkt ≤ C t ∀ k, t (3) 

q kt ≤ Mγkt ∀ k, t (4) 

γkt ∈ { 0 , 1 } ∀ k, t (5) 

0 ≤ q kt , I kt ∀ k, t (6) 
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In this linear optimization problem the objective is to mini- 

mize the setup cost s c 
k 

and the inventory holding cost h c 
k 
. The 

decision variables I kt , γ kt and q kt represent, respectively, the in- 

ventory on hand, the setup decision and the production quantity. 

Constraint 2 represents the inventory balance equation with I k 0 be- 

ing set to some initial value. Constraint 3 limits setups and pro- 

duction in time period t by the available capacity C t . Setting up 

production for an item k takes t s 
k 

amount of time, and producing 

one item k takes t 
p 

k 
amount of time. Constraint 4 ensures that the 

setup variable is set to one if product k is produced in period t ( M 

is a sufficiently large number). Constraint 5 states that γ kt is a bi- 

nary decision variable. Constraint 6 ensures a lower bound on the 

production quantity and the inventory on hand. 

Since demand is uncertain, a service level constraint is intro- 

duced to ensure production. This means that for the expected in- 

ventory on hand we obtain, 

E [ I kt ] = Q kt − E [ Y kt ] + L 

1 
Y kt 

(Q kt ) (7) 

with Y kt = 

∑ t 
τ=1 D kτ denoting the cumulated demand from period 

1 up to period t . For the expected backlog we obtain, 

E [ B 

l 
kt ] = L 

1 
Y kt 

(Q kt ) = E [ max { 0 , Y kt − Q kt } ] (8) 

with L 

1 
Y kt 

(Q kt ) being the first-order loss function of the random 

variable Y kt and depending on the cumulative production quantity 

Q kt . Consult Zipkin (2010) or Rossi et al. (2014) for a derivation that 

leads to an expression in terms of the standard normal probability 

density function φ( · ) and the standard normal cumulative density 

function �( · ), 

L 

1 
Y kt 

(Q kt ) = σY kt 

(
φ(z) − z 

(
1 − �(z) 

))
(9) 

with z = 

Q kt −E [ Y kt ] 
σY kt 

. We can now express the expected backorders, 

E [ B kt (Q kt )] , in terms of the expected backlog; that is, 

E [ B kt (Q kt )] = L 

1 
Y kt 

(Q kt ) − L 

1 
Y k,t−1 

(Q kt ) (10) 

The expression for the expected backorders can be used to de- 

fine the following fill-rate constraint, 

1 −
∑ T 

t=1 E [ B kt (Q kt )] ∑ T 
t=1 E [ d kt ] 

≥ β� , ∀ k (11) 

with B kt denoting the backorders for product k in time period t and 

β� being the target fill-rate. 

After introducing the expected values, Tempelmeier and 

Hilger (2015) derive the approximate stochastic counterpart of 

Problem 1 by using a piece-wise linear approximation for both 

functions. The functions are linearized into L line segments on the 

relevant interval [ u 0 
kt 

; u L 
kt 

] where subinterval [ u l−1 
kt 

; u l 
kt 

] relates to 

line segment l (1 ≤ l ≤ L ). The slope associated with line segment 

l of the expected inventory on hand function for item k at time 

period t is as follows, 

	l 
I kt 

= 

((
u 

l 
kt − E [ Y kt ] + L 

1 
Y kt 

(u 

l 
kt ) 

)
−

(
u 

l−1 
kt 

− E [ Y kt ] + L 

1 
Y kt 

(u 

l−1 
kt 

) 
))

1 

u 

l 
kt 

− u 

l−1 
kt 

∀ k, t, l (12) 

Similarly, the slope associated with line segment l of the ex- 

pected backorders function for item k at time period t is as fol- 

lows, 

	l 
B kt 

= 

(
L 

1 
Y kt 

(u 

l 
kt ) − L 

1 
Y k,t−1 

(u 

l 
kt ) 

)
−

(
L 

1 
Y kt 

(u 

l−1 
kt 

) − L 

1 
Y k,t−1 

(u 

l−1 
kt 

) 
)

1 

u 

l 
kt 

− u 

l−1 
kt 

∀ k, t, l (13) 

We now introduce a new decision variable w 

l 
kt 

to denote the 

part of the cumulative production quantity in time period t for 
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Fig. 1. First-order loss functions and the backorder function for t = 2 . 

product k and line segment l . Until line segment l � , all decision 

variables w 

l 
kt 

are equal to the size of the related interval [ u l−1 
kt 

; u l 
kt 

] , 

decision variable w 

l � 

kt 
is only filled partially, and the remaining de- 

cision variables w 

l 
kt 

, l ≥ l � , are set to zero. Therefore, the following 

equations must hold for these new decision variables, 

w 

l 
kt = u 

l 
kt − u 

l−1 
kt 

, l = 1 , 2 , . . . , l � − 1 (14) 

w 

l 
kt = Q kt − u 

l−1 
kt 

, l = l � (15) 

w 

l 
kt = 0 , l = l � + 1 , l � + 2 , . . . , L (16) 

Tempelmeier and Hilger (2015) argue that these equations are 

implicitly satisfied in their model because “the inventory function 

is convex, w 

l 
kt 

is only positive if w 

l−1 
kt 

= u l−1 
kt 

− u l−2 
kt 

”. We found out 

that these equations are not satisfied implicitly in their model be- 

cause there is an advantage in setting those w 

l 
kt 

’s larger than zero 

where the slopes 	l 
B kt 

times w 

l 
kt 

contributes the most to the re- 

duction of the expected backorders. This has to do with the fact 

that the backorder function found in Eq. (10) is non-convex for t ≥
2, as stated in the next lemma. 

Lemma 1. The expected backorder function E [ B kt (x )] is non-convex 

for t ≥ 2 . 

Proof of Lemma 1. See Appendix . �

Fig. 1 further illustrates this behaviour, it shows a plot of the 

first-order loss functions L 

1 
Y k, 1 

(Q kt ) , L 

1 
Y k, 2 

(Q kt ) and the expected 

backorder function E [ B k 2 (Q kt )] . From this figure it becomes even 

clearer that we can significantly reduce the expected backorders 

while producing less, i.e. fewer w 

l 
kt 

’s have to be filled to their max- 

imum. With as reason that only those w 

l 
kt 

’s will be zero that do not 

add much to a reduction in the expected backorders, while those 

that contribute the most are filled to their maximum. 

We examined the model of Tempelmeier and Hilger (2015) for 

selected instances of the problem. For example, we solved the 

problem above for one product, with the mean demand and stan- 

dard deviation being, respectively, μd kt 
= 100 and σd kt 

= 30 for 

each time period over a horizon of 12 periods. Inventory hold- 

ing costs are set to h c 
k 

= 1 , setup costs to s c 
k 

= 500 , setup time 

is set to zero t s 
k 

= 0 , processing time is set to t 
p 

k 
= 1 , capacity is 
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