
Computers and Operations Research 89 (2018) 113–126

Contents lists available at ScienceDirect

Computers and Operations Research

journal homepage: www.elsevier.com/locate/cor

Satisfiability modulo theory (SMT) formulation for optimal scheduling

of task graphs with communication delay

Avinash Malik

a , Cameron Walker b , Michael O’Sullivan

b , Oliver Sinnen

a , ∗

a Department of Electrical and Computer Engineering, New Zealand
b Department of Engineering Science, University of Auckland, Auckland, New Zealand

a r t i c l e i n f o

Article history:

Received 14 November 2016

Revised 18 June 2017

Accepted 16 August 2017

Available online 24 August 2017

Keywords:

Parallel computing

Task scheduling with communication delays

SMT

MILP

a b s t r a c t

In scheduling theory and practise for parallel computing, representing a program as a task graph with

communication delays is a popular model, due to its general nature, its expressiveness and relative sim-

plicity. Unfortunately, scheduling such a task graph on a set of processors in such a way that it achieves

its shortest possible execution time (P| pred, c i j | C max in α| β| γ notation) is a strong NP-hard optimization

problem without any known guaranteed approximation algorithm. Hence, many heuristics have been re-

searched and are used in practise. However, in many situations it is necessary to obtain optimal sched-

ules, for example, in the case of time-critical systems or for the evaluation of heuristics. Recent years

have seen some advances in optimal algorithms for this scheduling problem, based on smart exhaus-

tive state-space search or MILP (Mixed Integer Linear Programming) formulations. This paper proposes

a novel approach based on SMT (Satisfiability Modulo Theory). We propose an elegant SMT formulation

of the scheduling problem that only needs one decision variable and is very compact and comprehensi-

ble in comparison to the state-of-the-art MILP formulations. This novel optimal scheduling approach is

extensively evaluated in experiments with more than a thousand task graphs. We perform experimental

comparison with the best known MILP formulations, with attempts to further improve them, and deeply

analyse the behaviour of the different approaches with respect to size, structure, number of processors,

etc. Our proposed SMT-based approach in general outperforms the MILP-formulations and still possesses

great potential for further optimization, from which MILP formulations have benefited in the past.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Task scheduling has long been recognized as a crucial part of

parallel computing. In any parallel computation, tasks need to be

mapped to the available processors and ordered for execution. In

the formalisation of this process, a directed acyclic graph (DAG) –

a task graph – represents the program to be executed on a par-

allel system. The nodes or vertices of this graph represent the

(sub-)tasks and the edges between them reflect the communica-

tion (data transfer) or dependencies between them. The weighted

DAG representation, a very universal and flexible model, has been

widely used in literature and practice to create schedules on a

given set of processors (Drozdowski, 20 09; Sinnen, 20 07). It has

also seen an increasing interest in High Performance Computing in

dynamic runtime schedulers such as StarPU (Augonnet et al., 2011),

∗ Corresponding author.

E-mail addresses: avinash.malik@auckland.ac.nz (A. Malik),

cameron.walker@auckland.ac.nz (C. Walker), michael.osullivan@auckland.ac.nz

(M. O’Sullivan), o.sinnnen@auckland.ac.nz (O. Sinnen).

KAAPI (Gautier et al., 2007), StarSS (Planas et al., 2009), and PaR-

SEC (Bosilca et al., 2013). Even the OpenMP standard now includes

DAG scheduling constructs (Board, 2013).

Unfortunately, the optimization problem of minimising the ex-

ecution time of a program, modelled as a weighted DAG, on a set

of processors is a well known NP-hard problem (Sarkar, 1987), for

all but some very simplified cases, e.g. a fork or a join graph on

an unlimited number of processors (Chrétienne, 1989), or a tree

with unit weights on two processors (El-Rewini and Ali, 1994).

For that reason, many scheduling algorithms have been proposed

in the past. The largest category of algorithms is based on list

scheduling (Hu, 1961; Liu et al., 2005; Macey and Zomaya, 1998;

Yang and Gerasoulis, 1993a). Other algorithms are based on clus-

tering, where a second phase maps the clusters onto the limited

number of processors (Cirou and Jeannot, 2001; Kadamuddi and

Tsai, 20 0 0; Kianzad and Bhattacharyya, 20 06; Yang and Gerasoulis,

1993b). Also meta-heuristics, such a genetic algorithms have been

applied to task scheduling (Daoud and Kharma, 2011; Omara and

Arafa, 2010). In the general case there is no guaranteed constant

approximation factor, only one based on the communication costs

http://dx.doi.org/10.1016/j.cor.2017.08.012

0305-0548/© 2017 Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.cor.2017.08.012
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2017.08.012&domain=pdf
mailto:avinash.malik@auckland.ac.nz
mailto:cameron.walker@auckland.ac.nz
mailto:michael.osullivan@auckland.ac.nz
mailto:o.sinnnen@auckland.ac.nz
http://dx.doi.org/10.1016/j.cor.2017.08.012

114 A. Malik et al. / Computers and Operations Research 89 (2018) 113–126

of the graph (Hwang et al., 1989). Some scheduling algorithms

might even produce schedules that are longer than the sequen-

tial schedule, where all tasks are executed on the same proces-

sors (Sinnen, 2007). This is especially true for large communication

costs.

Given the importance of this task scheduling problem and the

lack of guaranteed approximation algorithms, an attempt has been

made to design algorithms and approaches to optimally solve this

scheduling problem. An optimal solution can be crucial for critical

systems, where the scheduled application is executed many times.

A very important usage of optimal schedules is the evaluation of

heuristic scheduling algorithms, given the lack of guaranteed op-

timality from heuristics. The quality of heuristic algorithms can be

judged better when the optimal solutions are available for compar-

ison. As a combinatorial optimization problem, the task schedul-

ing problem can be tackled with various approaches. Searching

through the exhaustive solution space is one method that has been

proposed, using algorithms such as branch-and-bound or A

∗ (Kafil

and Ahmad, 1998; Kwok and Ahmad, 2005; Shahul and Sinnen,

2010; Sinnen, 2014a; Venugopalan and Sinnen, 2016). Another ap-

proach is using (Mixed) Integer Linear Programming (MILP) formu-

lations with corresponding solvers. Despite the difficulty of solv-

ing scheduling problems with MILP formulations, there has been

some significant progress recently (Davare et al., 2006a; Davidovi ́c

et al., 2007; Venugopalan and Sinnen, 2015). As a natural general-

ization, constraint programming has been applied to solving the

task scheduling problem (Kuchcinski, 2003). Another recent ap-

proach is to use a SAT (Boolean Satisfiability Problem) formulation

to solve the scheduling problem (Liu et al., 2011).

In this paper we propose an approach based on a Satisfiabil-

ity Modulo Theory (SMT) formulation. The formulation is simple

and elegant as it is mostly based on the constraints that naturally

emerge from the scheduling model. We only employ one binary

decision variable to determine whether a task is scheduled on a

given processor or not. In terms of theory solver for the inequali-

ties, we employ Quantifier Free Linear Arithmetic Logic (QF_LRA).

To evaluate the performance and usefulness of the proposed

SMT formulation, we compare it with state-of-the-art MILP formu-

lations of the same problem (El Cadi et al., 2014; Mallach, 2016;

Venugopalan and Sinnen, 2015). In an attempt to further improve

these formulations, we propose new variants that address the typ-

ical symmetry issue of MILP formulations for scheduling problems.

The experimental evaluation is based on a large set of 120 task

graphs, which are scheduled with all the SMT and MILP formu-

lations onto different numbers of processors. These graphs cover

different structures, sizes and weightings. As solvers for the SMT

and MILP formulations we use Z3 (De Moura and Bjørner, 2008)

and Gurobi Optimization (2015) , respectively. We perform a thor-

ough analysis of the results, uncovering performance behaviour of

the formulations with respect to structure and other characteris-

tics of the task graphs and the processor number. Two types of

statistical classification are carried out, namely logistic regression

and decision tree classification. While some of the obtained results

are intuitive and expected (e.g. larger graphs are more difficult to

schedule optimally), other results are unexpected and can lead to

further improvement in the future. The evaluation shows that the

SMT formulation outperforms the MILP based approaches, espe-

cially for a lower number of processors, solving more problems op-

timally within the given time limit. This holds a lot of promise for

the novel SMT approach, given the potential of optimization, which

MILP formulations have already enjoyed.

The remainder of this paper is organized as follows.

Section 2 defines the scheduling model and problem. We propose

our SMT formulation of the problem in Section 3 and revisit

MILP formulations in Section 4 . The experimental evaluation of

all approaches is conducted and discussed in Section 5 . We study

related work in Section 6 and conclude the paper in Section 7 .

2. Scheduling model

A task graph G (V, E) is a directed acyclic graph (DAG), where

V = { v 1 , . . . , v n } is the set of computation tasks, and E ⊆V × V is the

set of data dependency constraints (or communications) between

tasks. A homogeneous multiprocessor platform P = { p 1 , . . . , p m

}
consists of m identical processors connected by a communication

network. Each processor is connected to every other processor. Fur-

thermore we also assume a dedicated communication sub-system

so that computation and communication can be executed in paral-

lel. Tasks are executed sequentially without preemption on a pro-

cessor. Every task is able to run on any processor. Execution Time

(ET) of task v ∈ V is given by t (v), and Communication Latency (CL)

for edge (v i , v j) ∈ E is given by c (v i , v j). If two tasks, with data

dependence, are mapped to the same processor, inter-task com-

munication is implemented by data sharing in local memory, and

no communication latency is incurred. If two tasks, with data de-

pendence, are mapped to different processors, communication be-

tween them is implemented by data transfer through communica-

tion links, and communication latency corresponds to the CL (e.g.,

c (v i , v j), (i, j) ∈ E). We define d eg −(v) (d eg + (v)) as being the in-

degree (out-degree) of the vertex v , i.e. the number of entering

(leaving) edges. In this work, we assume the ET values of tasks

and CL values of intertask communications are known, and focus

on optimizing the mapping and scheduling of a task graph under

these assumptions.

Given a task graph G (V, E) and a homogeneous multi-processor

platform P , the optimization problem is to find a mapping M : V → P

for each task in V to a processor in P and a schedule S : V → N for

the tasks assigned to processors, where each task v in V mapped to

a processor in P is assigned a natural number indicating its start-

ing time s for execution on P . This schedule (from now on the term

schedule implies both the mapping and the start time assignment

to tasks) must adhere to two constraints resulting from the above

definitions. The processor constraint , meaning that for any two tasks

on the same processor, one task must finish before the other one

starts. And the precedence constraint , which enforces that for any

edge (v i , v j) ∈ E , task v j can only start after task v i is completed (i.e.

s (v j) ≥ s (v i) + t(v i)) plus the communication time, if the tasks are

mapped to different processors (i.e. s (v j) ≥ s (v i) + t(v i) + c(v i , v j)).
The goal of the optimization is to minimize the makespan m (G).

Makespan, also called schedule length, is defined as the time dif-

ference between the start time of the earliest task and the fin-

ish time of the latest one. Assuming that the earliest task’s start

time is 0, the makespan is given by m (G) = max v ∈ V [s (v) + t(v)] .

The problem of finding the schedule that minimizes the makespan

is known to be NP-hard (Sarkar, 1987).

3. Satisfiability modulo theory (SMT) formulation

Satisfiability Modulo Theory (SMT) (Barrett et al., 2009) is a

technique for solving boolean constraint problems modulo theo-

ries. SMT has been used successfully in verification of hardware

and software programs. Fig. 1 shows the difference between a SAT

solver and a SMT solver. A SAT solver is used to solve proposi-

tional formulas. These formulas consist of atomic propositions (or

their logical negation), in the Boolean domain, combined using log-

ical connectives such as ∨ (disjunction), and ∧ (conjunction). A SAT

solver uses the well known DPLL (Davis et al., 1962) solving tech-

nique for finding a model , i.e., an assignment for atomic proposi-

tions that satisfies the propositional formula, if one exists. A SMT

solver extends a SAT solver with theory solvers in order to solve

Download English Version:

https://daneshyari.com/en/article/4958956

Download Persian Version:

https://daneshyari.com/article/4958956

Daneshyari.com

https://daneshyari.com/en/article/4958956
https://daneshyari.com/article/4958956
https://daneshyari.com

