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a b s t r a c t 

In scheduling theory and practise for parallel computing, representing a program as a task graph with 

communication delays is a popular model, due to its general nature, its expressiveness and relative sim- 

plicity. Unfortunately, scheduling such a task graph on a set of processors in such a way that it achieves 

its shortest possible execution time ( P| pred, c i j | C max in α| β| γ notation) is a strong NP-hard optimization 

problem without any known guaranteed approximation algorithm. Hence, many heuristics have been re- 

searched and are used in practise. However, in many situations it is necessary to obtain optimal sched- 

ules, for example, in the case of time-critical systems or for the evaluation of heuristics. Recent years 

have seen some advances in optimal algorithms for this scheduling problem, based on smart exhaus- 

tive state-space search or MILP (Mixed Integer Linear Programming) formulations. This paper proposes 

a novel approach based on SMT (Satisfiability Modulo Theory). We propose an elegant SMT formulation 

of the scheduling problem that only needs one decision variable and is very compact and comprehensi- 

ble in comparison to the state-of-the-art MILP formulations. This novel optimal scheduling approach is 

extensively evaluated in experiments with more than a thousand task graphs. We perform experimental 

comparison with the best known MILP formulations, with attempts to further improve them, and deeply 

analyse the behaviour of the different approaches with respect to size, structure, number of processors, 

etc. Our proposed SMT-based approach in general outperforms the MILP-formulations and still possesses 

great potential for further optimization, from which MILP formulations have benefited in the past. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Task scheduling has long been recognized as a crucial part of 

parallel computing. In any parallel computation, tasks need to be 

mapped to the available processors and ordered for execution. In 

the formalisation of this process, a directed acyclic graph (DAG) –

a task graph – represents the program to be executed on a par- 

allel system. The nodes or vertices of this graph represent the 

(sub-)tasks and the edges between them reflect the communica- 

tion (data transfer) or dependencies between them. The weighted 

DAG representation, a very universal and flexible model, has been 

widely used in literature and practice to create schedules on a 

given set of processors ( Drozdowski, 20 09; Sinnen, 20 07 ). It has 

also seen an increasing interest in High Performance Computing in 

dynamic runtime schedulers such as StarPU ( Augonnet et al., 2011 ), 
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KAAPI ( Gautier et al., 2007 ), StarSS ( Planas et al., 2009 ), and PaR- 

SEC ( Bosilca et al., 2013 ). Even the OpenMP standard now includes 

DAG scheduling constructs ( Board, 2013 ). 

Unfortunately, the optimization problem of minimising the ex- 

ecution time of a program, modelled as a weighted DAG, on a set 

of processors is a well known NP-hard problem ( Sarkar, 1987 ), for 

all but some very simplified cases, e.g. a fork or a join graph on 

an unlimited number of processors ( Chrétienne, 1989 ), or a tree 

with unit weights on two processors ( El-Rewini and Ali, 1994 ). 

For that reason, many scheduling algorithms have been proposed 

in the past. The largest category of algorithms is based on list 

scheduling ( Hu, 1961; Liu et al., 2005; Macey and Zomaya, 1998; 

Yang and Gerasoulis, 1993a ). Other algorithms are based on clus- 

tering, where a second phase maps the clusters onto the limited 

number of processors ( Cirou and Jeannot, 2001; Kadamuddi and 

Tsai, 20 0 0; Kianzad and Bhattacharyya, 20 06; Yang and Gerasoulis, 

1993b ). Also meta-heuristics, such a genetic algorithms have been 

applied to task scheduling ( Daoud and Kharma, 2011; Omara and 

Arafa, 2010 ). In the general case there is no guaranteed constant 

approximation factor, only one based on the communication costs 
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of the graph ( Hwang et al., 1989 ). Some scheduling algorithms 

might even produce schedules that are longer than the sequen- 

tial schedule, where all tasks are executed on the same proces- 

sors ( Sinnen, 2007 ). This is especially true for large communication 

costs. 

Given the importance of this task scheduling problem and the 

lack of guaranteed approximation algorithms, an attempt has been 

made to design algorithms and approaches to optimally solve this 

scheduling problem. An optimal solution can be crucial for critical 

systems, where the scheduled application is executed many times. 

A very important usage of optimal schedules is the evaluation of 

heuristic scheduling algorithms, given the lack of guaranteed op- 

timality from heuristics. The quality of heuristic algorithms can be 

judged better when the optimal solutions are available for compar- 

ison. As a combinatorial optimization problem, the task schedul- 

ing problem can be tackled with various approaches. Searching 

through the exhaustive solution space is one method that has been 

proposed, using algorithms such as branch-and-bound or A 

∗ ( Kafil 

and Ahmad, 1998; Kwok and Ahmad, 2005; Shahul and Sinnen, 

2010; Sinnen, 2014a; Venugopalan and Sinnen, 2016 ). Another ap- 

proach is using (Mixed) Integer Linear Programming (MILP) formu- 

lations with corresponding solvers. Despite the difficulty of solv- 

ing scheduling problems with MILP formulations, there has been 

some significant progress recently ( Davare et al., 2006a; Davidovi ́c 

et al., 2007; Venugopalan and Sinnen, 2015 ). As a natural general- 

ization, constraint programming has been applied to solving the 

task scheduling problem ( Kuchcinski, 2003 ). Another recent ap- 

proach is to use a SAT (Boolean Satisfiability Problem) formulation 

to solve the scheduling problem ( Liu et al., 2011 ). 

In this paper we propose an approach based on a Satisfiabil- 

ity Modulo Theory (SMT) formulation. The formulation is simple 

and elegant as it is mostly based on the constraints that naturally 

emerge from the scheduling model. We only employ one binary 

decision variable to determine whether a task is scheduled on a 

given processor or not. In terms of theory solver for the inequali- 

ties, we employ Quantifier Free Linear Arithmetic Logic (QF_LRA). 

To evaluate the performance and usefulness of the proposed 

SMT formulation, we compare it with state-of-the-art MILP formu- 

lations of the same problem ( El Cadi et al., 2014; Mallach, 2016; 

Venugopalan and Sinnen, 2015 ). In an attempt to further improve 

these formulations, we propose new variants that address the typ- 

ical symmetry issue of MILP formulations for scheduling problems. 

The experimental evaluation is based on a large set of 120 task 

graphs, which are scheduled with all the SMT and MILP formu- 

lations onto different numbers of processors. These graphs cover 

different structures, sizes and weightings. As solvers for the SMT 

and MILP formulations we use Z3 ( De Moura and Bjørner, 2008 ) 

and Gurobi Optimization (2015) , respectively. We perform a thor- 

ough analysis of the results, uncovering performance behaviour of 

the formulations with respect to structure and other characteris- 

tics of the task graphs and the processor number. Two types of 

statistical classification are carried out, namely logistic regression 

and decision tree classification. While some of the obtained results 

are intuitive and expected (e.g. larger graphs are more difficult to 

schedule optimally), other results are unexpected and can lead to 

further improvement in the future. The evaluation shows that the 

SMT formulation outperforms the MILP based approaches, espe- 

cially for a lower number of processors, solving more problems op- 

timally within the given time limit. This holds a lot of promise for 

the novel SMT approach, given the potential of optimization, which 

MILP formulations have already enjoyed. 

The remainder of this paper is organized as follows. 

Section 2 defines the scheduling model and problem. We propose 

our SMT formulation of the problem in Section 3 and revisit 

MILP formulations in Section 4 . The experimental evaluation of 

all approaches is conducted and discussed in Section 5 . We study 

related work in Section 6 and conclude the paper in Section 7 . 

2. Scheduling model 

A task graph G ( V, E ) is a directed acyclic graph (DAG), where 

V = { v 1 , . . . , v n } is the set of computation tasks, and E ⊆V × V is the 

set of data dependency constraints (or communications) between 

tasks. A homogeneous multiprocessor platform P = { p 1 , . . . , p m 

} 
consists of m identical processors connected by a communication 

network. Each processor is connected to every other processor. Fur- 

thermore we also assume a dedicated communication sub-system 

so that computation and communication can be executed in paral- 

lel. Tasks are executed sequentially without preemption on a pro- 

cessor. Every task is able to run on any processor. Execution Time 

(ET) of task v ∈ V is given by t ( v ), and Communication Latency (CL) 

for edge ( v i , v j ) ∈ E is given by c ( v i , v j ). If two tasks, with data 

dependence, are mapped to the same processor, inter-task com- 

munication is implemented by data sharing in local memory, and 

no communication latency is incurred. If two tasks, with data de- 

pendence, are mapped to different processors, communication be- 

tween them is implemented by data transfer through communica- 

tion links, and communication latency corresponds to the CL (e.g., 

c ( v i , v j ), ( i, j ) ∈ E ). We define d eg −(v ) ( d eg + (v ) ) as being the in- 

degree (out-degree) of the vertex v , i.e. the number of entering 

(leaving) edges. In this work, we assume the ET values of tasks 

and CL values of intertask communications are known, and focus 

on optimizing the mapping and scheduling of a task graph under 

these assumptions. 

Given a task graph G ( V, E ) and a homogeneous multi-processor 

platform P , the optimization problem is to find a mapping M : V → P 

for each task in V to a processor in P and a schedule S : V → N for 

the tasks assigned to processors, where each task v in V mapped to 

a processor in P is assigned a natural number indicating its start- 

ing time s for execution on P . This schedule (from now on the term 

schedule implies both the mapping and the start time assignment 

to tasks) must adhere to two constraints resulting from the above 

definitions. The processor constraint , meaning that for any two tasks 

on the same processor, one task must finish before the other one 

starts. And the precedence constraint , which enforces that for any 

edge ( v i , v j ) ∈ E , task v j can only start after task v i is completed (i.e. 

s (v j ) ≥ s (v i ) + t(v i ) ) plus the communication time, if the tasks are 

mapped to different processors (i.e. s (v j ) ≥ s (v i ) + t(v i ) + c(v i , v j ) ). 
The goal of the optimization is to minimize the makespan m ( G ). 

Makespan, also called schedule length, is defined as the time dif- 

ference between the start time of the earliest task and the fin- 

ish time of the latest one. Assuming that the earliest task’s start 

time is 0, the makespan is given by m (G ) = max v ∈ V [ s (v ) + t(v )] . 

The problem of finding the schedule that minimizes the makespan 

is known to be NP-hard ( Sarkar, 1987 ). 

3. Satisfiability modulo theory (SMT) formulation 

Satisfiability Modulo Theory (SMT) ( Barrett et al., 2009 ) is a 

technique for solving boolean constraint problems modulo theo- 

ries. SMT has been used successfully in verification of hardware 

and software programs. Fig. 1 shows the difference between a SAT 

solver and a SMT solver. A SAT solver is used to solve proposi- 

tional formulas. These formulas consist of atomic propositions (or 

their logical negation), in the Boolean domain, combined using log- 

ical connectives such as ∨ (disjunction), and ∧ (conjunction). A SAT 

solver uses the well known DPLL ( Davis et al., 1962 ) solving tech- 

nique for finding a model , i.e., an assignment for atomic proposi- 

tions that satisfies the propositional formula, if one exists. A SMT 

solver extends a SAT solver with theory solvers in order to solve 
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