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a b s t r a c t 

Finding maximum weight connected subgraphs within networks is a fundamental combinatorial opti- 

mization problem both from theoretical and practical standpoints. One of the most prominent applica- 

tions of this problem appears in Systems Biology and it corresponds to the detection of active subnetworks 

within gene interaction networks. 

Due to its importance, several modeling and algorithmic strategies have been proposed for tackling 

the maximum weight connected subgraph problem (MWCS) over the last years; the most effective strate- 

gies typically depend on the use of integer linear programming (ILP). Nonetheless, this implies that large- 

scale networks (such as those appearing in Systems Biology) can become burdensome; moreover, not all 

practitioners may have access to an ILP solver. In this paper, a unified modeling and algorithmic scheme 

is designed to solve the MWCS and some of its application-oriented variants with cardinality-constraints 

or budget-constraints. The proposed framework is based on a general node-based model which is tackled 

by a Relax-and-Cut scheme, i.e., Lagrangian relaxation combined with constraint generation; this yields 

a heuristic procedure capable of providing both dual and primal bounds. The approach is enhanced by 

additional valid inequalities, lifted valid inequalities, primal heuristics and variable-fixing procedures. 

Computational results on instances from the literature, as well as on additional large-scale instances, 

show that the proposed framework is competitive with respect to the existing approaches and it al- 

lows to find improved solutions for some unsolved instances from literature. The effect of initializing a 

Branch-and-Cut approach with information from the Relax-and-Cut is also investigated. The implemented 

approach is made available online. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction and motivation 

The problem of finding active subnetworks has recently received 

considerable attention from the bionformatics community (see, 

e.g., Andreotti, 2015; Backes et al., 2011; Dittrich et al., 2008; 

El-Kebir, 2015; Hatem, 2014; Huang, 2011; Ideker et al., 2002; 

Yamamoto et al., 2009 and the references therein). In this prob- 

lem, one is given a gene interaction network (also known as 

interactome ), and the goal is to find active subnetworks associated 

with a particular biological process (e.g., a cancer). In Dittrich 

et al. (2008) , this problem was formalized as the maximum weight 

connected subgraph problem (MWCS). In this problem, the input 

corresponds to a graph G = (V, E) , with node-weights w v ∈ R , ∀ v ∈ 

V , and the goal is to find a connected subgraph G 

′ with maximum 
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node-weight. In a biological context, the nodes model genes and 

a particular node-weight w v is a score that represents the signifi- 

cance of gene v for the biological process under investigation. The 

scores are typically based on data obtained by DNA-microarray 

experiments. 

Aside from its importance in bioinformatics, the MWCS appears 

as a basic optimization problem in wildlife corridor design ( Dilkina 

and Gomes, 2010 ), forestry planning ( Carvajal et al., 2013 ), object 

and activity saliency detection ( Adluru et al., 2014; Chen and 

Grauman, 2012; Vijayanarasimhan and Grauman, 2011 ), wireless 

network deployment planning ( Kuo et al., 2015 ), among others. 

Dittrich et al. (2008) showed that the MWCS can be trans- 

formed into the prize-collecting Steiner tree problem (PCSTP) and 

developed an exact integer linear programming (ILP)-based solu- 

tion approach built on the PCSTP framework of Ljubi ́c et al. (2006) . 

After Dittrich et al. (2008) , further exact solution approaches based 

on ILPs have been proposed by Althaus and Blumenstock (2014) , 
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Álvarez-Miranda et al. (2013a) , Álvarez-Miranda et al. (2013b) , 

Backes et al. (2011) , El-Kebir and Klau (2014) and Fischetti 

et al. (2016) . In contrast to Dittrich et al. (2008) , where arc and 

node-variables are used, these latter approaches are based on 

formulations using only node-variables. Such models have much 

less variables which is particularly useful in highly dense networks 

as those appearing in the identification of functional modules in 

gene regulatory networks. Complementary to these algorithms, 

polyhedral studies on the connected subgraph polytope are carried 

out in Wang et al. (2017) . 

Depending on the area of application, there may be additional 

side-constraints like a cardinality-constraint or a budget-constraint. 

In Backes et al. (2011) , the cardinality-constrained counterpart of 

the MWCS was tackled via ILP considering an arc-based model. In 

a latter work, the same variant was approached in Álvarez-Miranda 

et al. (2013a) using a much more efficient node-based model. Sim- 

ilarly, an arc-based ILP model was proposed by Dilkina and Gomes 

(2010) for the budget-constrained variant. In a more recent work, 

considerably better computational results were obtained by means 

of a node-based model by Álvarez-Miranda et al. (2013b) . 

In this work, a Relax-and-Cut (R&C) approach, i.e., Lagrangian 

relaxation combined with constraint generation, is designed for 

the MWCS, and its cardinality-constrained and budget-constrained 

versions. The use of such algorithm is motivated by the following 

two observations. First, the previously proposed ILP approaches 

need an exponential number of constraints, hence, they are tack- 

led by means of Branch-and-Cut (B&C). As a consequence, these 

strategies typically fail in providing acceptable gaps for massive 

instances, as those appearing in bioinformatics, mainly due to time 

consuming separation procedures. And second, practitioners may 

not have access to an ILP solver or may not have the expertise 

to use it, and thus there is need for alternative approaches. As a 

matter of fact, for this reason the R-package BioNet (see Beisser 

et al., 2010 in addition to Dittrich et al., 2008 ), also contains a 

heuristic for the MWCS, for users without access to an ILP solver. 

Another example of a heuristic for an equivalent problem arising 

in Bioinformatics corresponds to the hybrid ILP-based heuristic 

proposed in Akhmedov et al. (2016) ; the approach is based on 

embedding the resolution of small size PCSTP instances within a 

clustering strategy in a divide-and-conquer scheme. In contrast to 

the heuristics in Akhmedov et al. (2016) and Beisser et al. (2010) , 

the approach proposed in this paper also provides a dual bound 

which allows to judge the quality of the attained (primal) solu- 

tions. Furthermore, the proposed scheme can be embedded within 

a branch-and-bound framework, allowing an exact resolution of 

the problem. Note that implementations of Lagrangian relaxation- 

based algorithms have been successfully applied to solve problems 

related to the MWCS. Sophisticated Lagrangian relaxation schemes 

(without cut generation) are designed by Haouari et al. (2008) ; 

2010 ) for the PCSTP. Complementary, R&C implementations are 

devised by Lucena (2005) ; 2006 ) for the Steiner tree problem, and 

by Cunha et al. (2009) for the PCSTP. A dual ascent algorithm for 

the PCSTP is designed in the current working paper ( Leitner et al., 

2016 ). This approach also does not need an ILP solver, however, it 

does not allow for cardinality-constraints or budget-constraints. 

In order to assess the efficiency of the R&C algorithm proposed 

in this paper, both from the view of solution quality and runtime, 

a computational study on a large set of benchmark instances 

from the literature is reported. Moreover, additional large-scale 

instances, which have been constructed to resemble interactomes, 

are tested as well. For the MWCS, the performance of the R&C 

is compared with that of the state-of-the-art B&C algorithm 

proposed in Fischetti et al. (2016) . For the cardinality-constrained 

and budget-constrained MWCS, the proposed algorithm is com- 

pared with an adaptation of the same B&C algorithm provided 

in Fischetti et al. (2016) . Furthermore, the use of the R&C as 

initialization strategy of the B&C algorithm is also investigated. 

Computational results show the advantages of the R&C algorithm 

with respect to the other exact alternatives. The implemented 

program provided for download at https://msinnl.github.io/ ( Sinnl 

and Álvarez-Miranda, 2017 ). 

Paper outline. In Section 2 the ILP formulation used in the R&C 

algorithm is presented. Likewise, the cardinality-constrained and 

budget-constrained versions are discussed in more detail. A generic 

scheme of R&C is outlined in Section 3 . In Section 4 the designed 

algorithmic framework is described. Computational results are re- 

ported in Section 5 , which also gives a description of the B&C, and 

of the combination of R&C and B&C. Finally, concluding remarks 

are drawn in Section 6 . 

2. An ILP formulation for the MWCS and some of its variants 

A formal definition of MWCS is: 

Definition 1 (The MWCS) . Given an undirected graph G = (V, E) 

and a weight function w : V → R , the MWCS is the problem 

of finding a subset of nodes V T , so that the subgraph ( V T , E T ), 

with E T = {{ u, v } ∈ E | u, v ∈ V T } , is connected and has the largest 

possible sum of node weights (i.e., 
∑ 

v ∈ V T w v is maximized). 

As mentioned before, this definition can be complemented by 

so-called side-constraints depending on the particular application. 

For instance, in some contexts, a constraint 
∑ 

v ∈ V T c v ≤ B defined 

by c : V → N and B ∈ N must also be satisfied. Such a constraint 

may appear, e.g., in Bioinformatic settings where compact , i.e., 

cardinality-constrained, functional modules are preferred over 

large ones (see, e.g., Yamamoto et al., 2009; Yosef et al., 2011 ); in 

this case c = 1 . Likewise, in a wildlife corridor design setting al- 

though the aim is to find a connected reserve that maximizes the 

ecological suitability, it must respect an economical bound ( Dilkina 

and Gomes, 2010 ). Similarly, in the design of wireless networks, 

although the objective is to construct a mesh that maximizes 

the service coverage, there are construction budgets that must be 

satisfied ( Kuo et al., 2015 ). Although the cardinality-constrained 

version is a special case of the budget-constrained version, here it 

is regarded as its own problem variant, as it allows to use a more 

efficient solution approach. In the budget-constrained version, one 

assumes that c i ≤ B , ∀ i ∈ V , as nodes not fulfilling this condition 

can easily be removed at the beginning. 

Let y ∈ {0, 1} | V | be a vector of binary variables such that 

y i = 1 if node i ∈ V is part of the connected subgraph, and y i = 0 

otherwise. Let � denote the set of all {0, 1} | V | vectors associated 

with connected components of G . Under this notation, the MWCS 

and its variants above can be modeled as 

max 
{

w 

T y | �y ≤ β and y ∈ �
}
, (1) 

where �y ≤ β represents a (possibly empty) set of side- 

constraints. There are several alternatives to model the constraint 

y ∈ �. In this paper a node-based model, as proposed in Álvarez- 

Miranda et al. (2013a ), El-Kebir and Klau (2014) and Fischetti et al. 

(2016) , is considered. For formulating such model, the following 

definition is needed. 

Definition 2 (Node-separator) . For two distinct nodes k and � 

from V , a subset of nodes N ⊆V �{ k , � } is called ( k , � ) -node separator 

if and only if after eliminating N from V there is no ( k , � ) path in 

G . A separator N is minimal if N �{ i } is not a ( k , � ) separator, for any 

i ∈ N . Let N (k, � ) denote the family of all minimal ( k , � ) separators. 
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