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a b s t r a c t 

We address an important variant of the rectangle packing problem, the soft rectangle packing prob- 

lem, and explore its problem extension for the fixed-outline floorplanning with soft modules. For the 

soft rectangle packing problem with zero deadspace, we present an iterative merging packing algorithm 

that merges all the rectangles into a final composite rectangle in a bottom-up order by iteratively merg- 

ing two rectangles with the least areas into a composite rectangle, and then shapes and places each 

pair of sibling rectangles based on the dimensions and position of their composite rectangle in an up- 

bottom order. We prove that the proposed algorithm can guarantee feasible layout under some condi- 

tions, which are weaker as compared with a well-known zero-dead-space packing algorithm. We then 

provide a deadspace distribution strategy, which can systematically assign deadspace to modules, to ex- 

tend the iterative merging packing algorithm to deal with soft packing problem with deadspace. For the 

fixed-outline floorplanning with soft modules problem, we propose an iterative merging packing based 

hierarchical partitioning algorithm, which adopts a general hierarchical partitioning framework as pro- 

posed in the popular PATOMA floorplanner. The framework uses a recursive bipartitioning method to 

partition the original problem into a set of subproblems, where each subproblem is a soft rectangle pack- 

ing problem and how to solve the subproblem plays a key role in the final efficiency of the floorplanner. 

Different from the PATOMA that adopts the zero-dead-space packing algorithm, we adopt our proposed 

iterative merging packing algorithm for the subproblems. Experiments on the IBM-HB benchmarks show 

that the proposed packing algorithm is more effective than the zero-dead-space packing algorithm, and 

experiments on the GSRC benchmarks show that our floorplanning algorithm outperforms three state-of- 

the-art floorplanners PATOMA, DeFer and UFO, reducing wirelength by 0.2%, 4.0% and 2.3%, respectively. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Rectangle packing problem ( Baker et al., 1980 ), which aims to 

place a set of rectangles onto a rectangular outline, is one of 

the representative problems in combinational optimization. For the 

packing problem dealing with rectangles with fixed dimensions, 

there are a lot of heuristics ( He et al., 2012; 2015; Huang et al., 

20 07; Lesh et al., 20 05 ) and meta-heuristic methods ( Gonçalves, 

2007; Gonçalves and Resende, 2010; Hopper and Turton, 2001 ). 
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The soft rectangle packing (SRP) problem deals with soft rectan- 

gles whose areas are fixed and aspect ratios (the ratio of rectangle 

height to rectangle width) can be adjusted in certain ranges. 

In the research of SRP, if deadspace is allowed on the out- 

line, there are plenty of works to determine the upper bound 

on the optimal area of the outline. By dividing rectangles into 

groups based on their areas and placing them one at a time in 

an area non-increasing order, Young and Wong (1997) give an up- 

per bound min { (1 + 1 / 
√ 

r ) , 5 / 4 , (1 + α) } A total , where A total is the 

total area of all the rectangles, A max is the maximum rectangle 

area, α = 

√ 

2 A max / (rA total ) and r ≥ 2 is the shape flexibility of 

each rectangle. Based on the same packing strategy but more de- 

tailed analysis, Peixoto et al. (20 0 0) give a more delicate upper 

bound (1 + 1 / (| √ 

r | γ −1 )) , where γ is the smallest j ≥ 2 such that 

group j is not empty. Yang et al. (2005) adjust the rectangle group- 

ing rule in ( Peixoto et al., 20 0 0 ) and propose an upper bound 
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min { 1 . 131 , (1 + β) } × A total , where β = 

√ 

A max / (2 rA total ) and r ≥
2.25. Nagamochi (2006) proves that if the area of the outline is 

no less than A total + 0 . 10103 A max and the length of the outline’s 

shorter side is no less than 

√ 

A max / 3 , then all the rectangles can 

be packed with each rectangle’s aspect ratio is no more than 3. 

When the outline contains no deadspace for the SRP, Beaumont 

et al. (2002) propose two extended problems of SRP, PERI-SUM 

and PERI-MAX, which aim to minimize the sum of the perime- 

ters of the rectangles and to minimize the largest perimeter 

of the rectangles respectively. And they give a 7/4-approximate 

algorithm for PERI-SUM and a 2 / 
√ 

3 -approximation algorithm 

for PERI-MAX. Nagamochi and Abe (2007) present an O ( nlogn ) 

complexity algorithm that finds a 1.25-approximate packing so- 

lution for PERI-SUM and a 2 / 
√ 

3 -approximate packing solu- 

tion for PERI-MAX, and the rectangles’ aspect ratio is at most 

max { ρ(outline ) , 3 , 1 + max n −1 
i =1 

{ A i +1 /A i } } , where ρ( outline ) is the 

aspect ratio of the outline and A i is the area of rectangles sorted in 

a non-increasing order. By modifying a divide-and-conquer strat- 

egy ( Peixoto et al., 20 0 0 ), Fügenschuh et al. (2014) give a 3 / 
√ 

3 - 

approximate algorithm for the PERI-SUM. Cong et al. (2006) pro- 

pose a zero-dead-space (ZDS) packing algorithm, and prove that 

the algorithm can obtain feasible packing under some sufficient 

conditions. 

The fixed-outline floorplanning of soft modules (FOFSM) prob- 

lem is one of the main applications of SRP. Given a set of nets 

specifying the interconnections among modules, FOFSM aims to 

minimize the total wirelength of the nets while placing modules 

feasibly as required by SRP. There are two main kinds of methods 

for the FOFSM: the simulated annealing (SA) based method and 

the global-legalization (GL) based method. 

In the SA-based method, we need to design a suitable repre- 

sentation to encode the layout, and to design an efficient method 

to synthesize a layout from a representation. As the shapes of the 

soft modules could vary continuously, it is difficult to synthesize 

a layout from a representation. Several analytical methods have 

been proposed to address this issue. Based on the sequence-pair 

representation ( Murata et al., 1996 ), Young et al. (2001) propose a 

geometric programming approach using the lagrangian relaxation 

technique to synthesize layout from the sequence pair representa- 

tion, and Kim and Kim (2003) adopted a construction method and 

a linear programming based method to perform the synthesizing. 

He et al. (2008) suggest an ordered quadtree representation. Given 

an ordered quadtree, they iteratively build and solve a group of 

four quadratic equations in four variables to determine the dimen- 

sions and coordinates of each module. Lin and Hung (2012) apply 

a left-right skewed binary tree (SKB-Tree) to encode a floorplan. 

To transform a SKB-Tree into a layout, they first divide the outline 

into a set of containers. Then, they place modules in each skewed 

right branch into the corresponding container iteratively. 

The GL-based method consists of two stages: the global place- 

ment stage and the legalization stage. The global placement stage 

aims to evenly place modules onto the outline and to minimize 

the wirelength simultaneously. The legalization stage removes the 

overlap among modules to obtain an overlap-free layout. Ying and 

Wong (1989) heuristically model the two stages as unconstrained 

minimization problems and solve them by a modified self-scaling 

variable metric method ( Oren, 1973 ). By transforming rectangular 

modules into circles, Luo et al. (2008) propose a convex optimiza- 

tion model called attractor-repeller (AR) to place modules in the 

first stage. They use a second order cone programming (SOCP) for- 

mulation to yield overlap-free layout and minimize the wirelength 

in the second stage. Lin and Hung (2011) present a unified convex 

optimization (UFO) floorplanner. By modifying the AR model, the 

UFO adopts a push-pull model whose objective is more accurate 

than that of AR in measuring the wirelength. UFO uses a SOCP as 

a legalization method to remove overlaps without considering the 

wirelength. By combining the advantage of the analytical approach 

and the slicing tree representation, Lin and Wu (2014) propose a 

F-FM floorplanner for the floorplanning problem with mixed-size 

modules. The F-FM adopts an analytical method Aplace ( Kahng and 

Wang, 2005 ) as the placement tool, and constructs a generalized 

slicing tree (GST) ( Yan and Chu, 2010 ) to capture feasible layout 

from the distributed layout. 

In this paper, we propose an iterative merging packing (IMP) 

algorithm for the SRP with zero deadspace constraint (the area of 

the outline equals the total area of the rectangles). Similar to the 

construction of Huffman tree, IMP first merges all the rectangles 

into a final composite rectangle by iteratively merging two rectan- 

gles with the least areas. For each composite rectangle generated 

in the process, the merging direction (horizontal/vertical) and rel- 

ative position (left-right/top-down) of the two sub-rectangles are 

not specified. Then, IMP places the final composite rectangle ex- 

actly onto the outline, and recursively determines the dimensions 

and positions of each pair of sub-rectangles based on the aspect 

ratio of their composite rectangle. Based on a novel deadspace dis- 

tribution strategy, which assigns deadspace to some rectangles to 

extend their dimension flexibility, we extend IMP to solve SRP hav- 

ing deadspace. 

Based on the IMP, we propose an iterative merging packing 

based hierarchical partitioning (IMP-HP) algorithm for the fixed- 

outline floorplanning with soft modules (FOFSM) problem. IMP-HP 

adopts the same hierarchical bipartitioning framework in PATOMA 

proposed by Cong et al. (2006) , but we replace the packing algo- 

rithm as our IMP. IMP-HP uses a recursive bipartitioning to parti- 

tion the original problem into a set of subproblems so as to mini- 

mize the interconnections among the subproblems, and it uses IMP 

to solve all the subproblems to get a solution. At each bipartition of 

IMP-HP, by dividing modules with the multilevel hypergraph par- 

titioning algorithm hMetis ( Karypis et al., 1999 ) and cutting the 

placed region parallel to the short edge, we partition a problem 

into two subproblems. If either of the subproblems cannot be fea- 

sibly solved by IMP, then we use the deadspace distribution strat- 

egy to assign deadspace to some infeasible modules to legalize the 

subproblems. The bipartition is implemented if and only if both 

the subproblems can be feasibly solved by IMP. 

Our main contribution are the design of the packing algorithm 

IMP and the design of the strategy assigning deadspace to mod- 

ules. For the IMP, we prove that it can feasibly place soft rectan- 

gles under some sufficient conditions. Compared with zero-dead- 

space (ZDS) ( Cong et al., 2006 ), a popular packing algorithm which 

has sufficient conditions for feasible packing, the sufficient condi- 

tions of IMP are more weak. Experimental results also verify that 

IMP and ZDS have the same capability in handling soft rectan- 

gles having flexible dimensions, and IMP is more effective when 

the rectangles have stringent restrictions on the shapes. As for 

the deadspace distribution strategy, because it assigns deadspace 

to infeasible rectangles based on the extent that each rectan- 

gle’s dimensions exceed its feasible interval, a proper amount of 

deadspace can be distributed to the targeted rectangles, which can 

dramatically improve the flexibility of IMP. 

The remainder of this paper is organized as follows. 

Section 2 presents the formulations of SRP and FOFSM. 

Section 3 describes the iterative merging packing (IMP) algo- 

rithm for SRP with zero deadspace constraint and analyzes its 

conditions for feasible packing. Section 4 presents an extension 

of IMP to solve SRP having deadspace. Section 5 presents the 

iterative merging packing based hierarchical partitioning (IMP-HP) 

algorithm for the FOFSM. Experimental results are presented in 

Section 6 , and the final section ends with a conclusion. 
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