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a  b  s  t  r  a  c  t

A  strategy  for in  situ  fault  detection  of plasma  equipment  is presented.  This  was  accomplished  by com-
bining  optical  emission  spectroscopy  (OES),  neural  network.  The  OES  was  used  to  collect  fault  spectra,
inducted  by  radio  frequency  source  and  bias  powers.  A  fault  detection  model  was  constructed  by  training
the  backpropagation  neural  network  (BPNN)  on  the  whole  OES  spectrum  representing  a normal  plasma
operation.  The  trained  BPNN  model  was  tested  on  the test  data  generated  at other powers.  The  test  result
indicates that  the  BPNN  model  was  capable  of  detecting  abnormal  plasma  caused  by  a  small  variation  of
1% in  the  source  power.  Due  to  less  impact  on the  plasma  properties,  the  BPNN  model  reacted  sensitively
only  to  a  relatively  large  variation  in the  bias  power.  The  performance  of  the  BPNN  model-based  monitor-
ing scheme  was  further  compared  to  that  of  identified  radicals.  Much  improved  sensitivity  of  the BPNN
model over  them  was  clearly  demonstrated  for  the  source  power  variation.  On  the  other  hand,  certain
radicals  yielded  much  improved  detection  for the bias  power  variation.  This  was  manifest  as  plasma  was
monitored  by  means  of the  CUSUM  control  chart.  In consequence,  monitoring  BPNN  model-based  pre-
diction  and  identified  radicals  simultaneously  is  expected  to provide  an  improved  detection  of plasma
processing  equipment.

© 2011  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Plasma equipment is crucial in etching or depositing thin films
for semiconductor manufacturing. Any occurrence of plasma faults
severely degrades process quality and eventually device yield.
Therefore, plasma status needs to be stringently monitored. As the
pattern density increases, this is increasingly in demand.

To monitor plasma processes, a variety of in situ sensors have
been utilized in manufacturing sites. These include a radio fre-
quency (rf) impedance sensor, an optical emission spectroscopy
(OES), an ion energy analysis system (IEAS), and a residual gas
analyzer (RGA). Each sensor provides detailed and plentiful infor-
mation effective in detecting abnormal plasma. The OES provides
a spectrum that contains various radical intensities over a given
wavelength range. The impedance sensor characterizes the electri-
cal impedance of plasma in terms of the resistance and reactance
components [1].  From an ion energy distribution, the ion energy
analysis system extracts useful diagnostic variables regarding ion
energy and flux [2].  This system was recently adopted not only to
analyze ion bombardment impact on deposited film properties [3],
but to build a monitoring scheme [4]. The residual gas analyzer
provides the concentration of gas species. Of these, OES is the most
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popular in detecting faults in a plasma [5],  monitoring etch end-
point [6] or wafer states [7].  For a given plasma process, OES yields
a huge set of radical intensities at specific wavelengths. Radicals
reacting sensitively to a change in process parameters are identi-
fied either relying upon in-depth chemical and physical knowledge
or using a systematic data reduction technique. The performance
of fault detection by the former approach is somewhat limited
because diagnostic clues from other unselected radicals are disre-
garded. In general, fault symptoms are distributed across all radical
intensities. It is not certain that PCA-reduced set of radicals well
incorporates the nature of complex, nonlinear fault distribution.
This concern may  be circumvented by developing a technique to
characterize a full set of radicals as investigated [8].  For real-time
plasma monitoring, the PCA-reduced set of radicals are typically
coupled with a time-series neural network modeling [9–11]. They
are further utilized to build in-line models to track film properties
on a wafer-to-wafer basis [12–14].  A challenge facing OES-based
monitoring is to construct a prediction model with a complete set
of radicals that has no corresponding set of responses. In order to
develop a neural network model with a supervised learning, OES
data need to be converted into another data composed of input
and output variables. This has been typical to a neural network-
applied time series modeling [4,9–11].  In this study, the same
technique is used to prepare data for modeling. The next challenge
is related to the preparation of fault patterns, on which the neu-
ral network is trained. However, it is hardly possible to collect OES
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patterns for all possible fault occasions. In this sense, a fault detec-
tion model not relying on intentionally simulated fault patterns is
in demand. This is likely to be resolved as the model is built with
normal OES data, which are collected during the normal operation
of plasma equipment. Recently, as stated earlier, we have con-
structed fault detection models using the normal ion energy data
and demonstrated their high detection accuracy [4].  The general-
ization power of neural network is likely to be the key contributor
to the reported monitoring performance. To our best knowledge,
this work addresses the first application of normal OES patterns to
a neural network monitoring of faults in plasma states.

In this study, a new OES-based diagnosis model is presented.
Experimental data were collected in a plasma. The data are modeled
by using a backpropagation neural network (BPNN) [15]. The pro-
posed OES model is clearly differentiated from earlier OES models
in that it is trained on OES pattern collected during the normal oper-
ation of plasma equipment. It should be noted that previous models
were trained on the entire fault pattern. The model is then coupled
with a CUSUM control chart [16]. For a comparison purpose, OES
spectra regarding the major radicals involved in the plasma process
are also incorporated into the chart.

2. Experimental

In-situ OES data were collected in a SiH4–N2 plasma. A
schematic of the plasma equipment employed is shown in Fig. 1.
As shown in Fig. 1, a plasma is created inside a processing chamber
as a radio frequency (rf) source power is supplied into the gas filled
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Fig. 1. Schematic of a plasma processing equipment.

chamber. Plasma is electrically neutral and assumed to have equal
number of ions and radicals. The source power plays a crucial role
of controlling the density of generated plasma. Larger source power
produces larger plasma density. The other bias power connected to
the bottom of the chamber is used to control ion bombardment.
Larger bias power causes enhanced ion bombardment onto the
film surface. Any change in delivered source or power induces a
considerable variation in plasma radicals or ions as well as their
interaction with film surface. Therefore, both powers should be
stringently monitored during the plasma process. In this study, OES
was used to collect spectra of radical intensities over a wavelength
range of 177.37–1100.01 nm.  Two  types of OES data for neural net-
work learning and testing were collected. The process time was
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Fig. 2. Schematic of a backpropagation neural network.
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Fig. 3. Variation of average of radical spectra as a function of processing time.



Download English Version:

https://daneshyari.com/en/article/495906

Download Persian Version:

https://daneshyari.com/article/495906

Daneshyari.com

https://daneshyari.com/en/article/495906
https://daneshyari.com/article/495906
https://daneshyari.com

