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a b s t r a c t 

As shown in [1], the problem of routing a flow subject to a worst-case end-to-end delay constraint in 

a packed-based network can be formulated as a Mixed-Integer Second-Order Cone Program, and solved 

with general-p‘urpose tools in real time on realistic instances. However, that result only holds for one 

particular class of packet schedulers, Strictly Rate-Proportional ones, and implicitly considering each link 

to be fully loaded, so that the reserved rate of a flow coincides with its guaranteed rate . These assump- 

tions make latency expressions simpler, and enforce perfect isolation between flows, i.e., admitting a new 

flow cannot increase the delay of existing ones. Other commonplace schedulers both yield more complex 

latency formulæ and do not enforce flow isolation. Furthermore, the delay actually depends on the guar- 

anteed rate of the flow, which can be significantly larger than the reserved rate if the network is unloaded. 

In this paper we extend the result to other classes of schedulers and to a more accurate representation 

of the latency, showing that, even when admission control needs to be factored in, the problem is still 

efficiently solvable for realistic instances, provided that the right modeling choices are made. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

The Internet already supports applications that require stringent 

guarantees on end-to-end delays (voice/video streaming, remote 

operation of industrial/medical tools, etc.). Obtaining Quality of Ser- 

vice (QoS) guarantees for a packet flow, such as a maximum delay, 

is thus a crucial problem, which is made nontrivial by the packed- 

based nature of the infrastructure. QoS routing is the practice of 

computing network paths where a suitable QoS can be guaranteed, 

which gives rise to Constrained Shortest Path (CSP) problems. CSPs 

having a single end-to-end constraint which is an additive or mul- 

tiplicative concave function of per-link metrics admit polynomial 

solution algorithms, while CSPs with two or more constraints are 

N P -hard (cf. [1] and the references therein). Due to the typically 

strict requirements on the time to deliver the solution in practice 

(say, some 10s or 100s of milliseconds), approximate approaches 

are normally employed to solve them (e.g., [2–4] ). Furthermore, 

rather simplified network models have been traditionally employed 

where the relevant QoS parameters, say link delays, are considered 

statically known and additive. This neglects queueing , i.e., the 
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delay due to the fact that the same link is shared by different 

flows, whose packets are transmitted sequentially. Queueing delays 

depend on the packet schedulers employed to arbitrate the flows. 

A well-known paradigm for QoS scheduling is Generalized 

Processor Sharing (GPS) [5] , that defines an ideal reference system 

which serves backlogged flows simultaneously at a rate propor- 

tional to their weight . If flow weights are chosen equal to their 

reserved rates , and their sum does not exceed the link capacity, 

then GPS guarantees that the flows’ guaranteed rates will be 

at least as large as the reserved ones. This allows per-link and 

end-to-end Worst-case Delay (WCD) bounds to be computed if 

the traffic arrival rate at the source is constrained. Two practical 

implementations of GPS have been proposed, namely Packet-by- 

packet Generalized Processor Sharing (PGPS) [5] and Worst-case Fair 

Weighted Fair Queueing (WF2Q) [6] . Both exhibit tight guarantees 

on the latency , i.e., the worst-case scheduling delay at a link, which 

is—barring a small additive constant—inversely proportional to the 

guaranteed rate, thereby earning them the moniker of Strictly 

Rate-Proportional (SRP) schedulers. Since a flow’s WCD depends on 

the guaranteed rates along its path, QoS routing problems with 

WCD constraints can easily be defined assuming SRP schedulers in 

the network. For instance, [7,8] show that the problem of finding 

a path with a pre-specified WCD is N P -hard in general, unless 

the same rate is reserved at each link. Recently, [1] showed that, 
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nonetheless, optimal solutions can be found in split-second times 

for realistic-sized networks even allowing different rates for each 

link, and that this leads to sizable performance gains in terms of 

flow blocking probability [9] . 

Unfortunately, the implementation of SRP schedulers is rather 

complex, which is a downside on high-speed links and/or with 

many simultaneous flows. In the last two decades, several sched- 

ulers have been devised which exhibit different trade-offs between 

latency and implementation cost, some having made their way 

into commercial hardware [10] . At one end of the spectrum we 

find GPS approximations based on flow grouping [11,12] , and at the 

other end lie frame-based algorithms such as Deficit Round Robin 

[13] and its derivatives [10,14,15] . Both are simpler, but exhibit 

looser latency guarantees as well. To the best of our knowledge, 

no attempt has been made so far to devise QoS-routing schemes 

for these other schedulers. The only related work that we are 

aware of, [16] , shows that non-uniform rate allocation given a 

pre-specified routing plan achieves better network utilization than 

uniform rate allocation in the presence of WCD constraints. This 

means that so far it has been impossible to estimate the im- 

pact of employing lower-complexity schedulers on the network 

performance (e.g., utilization or blocking probability). 

Furthermore, all previous works—including [1,9] —have resorted 

to simplifying the latency formulæ by assuming that the guar- 

anteed rate of a flow is equal to its reserved rate. This bound 

assumption is safe, in that the reserved rate is always no larger 

than the guaranteed one, but it leads to over-estimating the WCD 

experienced by a flow, and therefore to a more conservative 

resource allocation than necessary. To the best of our knowledge, 

the impact of the bound assumption on the network performance 

has not been investigated yet. 

This paper provides a first, necessary step towards answering 

the above questions by formulating and solving the Admissible 

Delay-Constrained Shortest Path (ADCSP) problem: given the cur- 

rent state of the network, a set of link reservation costs , and a 

new flow to be routed between a given source and destination 

under a pre-specified WCD constraint, determine a feasible path 

and a feasible rate reservation on each link (if there exists one) 

minimizing the total reservation cost and ensuring that existing 

flows still satisfy their WCD constraints. We show that, for several 

classes of packet schedulers, the ADCSP problem can be formu- 

lated as a Mixed-Integer Second-Order Cone Problem (MI-SOCP) 

and solved by general-purpose tools in split-second times for 

realistically-sized networks. This paves the way to exploring the 

impact of employing different scheduling algorithms on network 

performance. We also show that, while distinguishing between 

reserved and guaranteed rates in the latency formulæ does in- 

crease the complexity of the models, the cost of doing so remains 

bearable, thus opening the way to studying the impact of these 

modeling choices, too, on network performance. 

This paper is organized as follows. In Section 2 we present 

our system model and hypotheses. In Sections 3 –5 we discuss 

models for the three main classes of latency formulæ—respectively, 

Strictly Rate-Proportional (and their Group-Based approximations), 

Weakly Rate-Proportional and Frame-Based ones—under different 

assumptions on the description of reserved and guaranteed rates. 

In Section 6 we report computational results which show the 

relative efficiency (and, partly, effectiveness) of the various models 

on real networks with realistic traffic data. Finally, in Section 7 we 

draw some conclusions. 

2. System model 

We are given a computer network represented by a directed 

graph G = (N, A ) , with n = | N| and m = | A | . Nodes are switching 

elements (e.g., routers), and arcs are the links interconnecting 

them. Henceforth, delays are in seconds, packet lengths are in bits, 

and rates and link speeds are in bits per second. Each node i ∈ 

N is characterized by a fixed node delay n i . Each arc ( i, j ) ∈ A is 

characterized by a fixed link delay l ij , a physical link speed w ij , and 

the maximum transmit unit (MTU) L (assumed to be constant for 

simplicity). A set Q of flows is already present in the network. Each 

q ∈ Q is characterized by a fixed path in G (which, for notational 

simplicity, we will denote by q as well), fixed reserved rates r 
q 
i j 

for all ( i, j ) ∈ q , an upper bound on the tolerable WCD—called 

its deadline —δq , and a leaky-bucket arrival-curve constraint . That 

is, if F ( t ) denotes the number of bits of the flow injected at the 

source in [0, t ), F (t + τ ) − F (t) ≤ σ q + ρq τ has to hold for all t 

and τ ≥ 0, where σ q and ρq are the burst and the rate of the flow, 

respectively. 

We now introduce the Admissible Delay-Constrained Shortest 

Path (ADCSP) problem: given the current state Q of the network, 

the cost f ij of reserving one unit of capacity on ( i, j ), and the data 

describing one “new” flow to be routed in G (its endpoints s and 

d , burst σ and rate ρ , and deadline δ), find one feasible s − d

path p and a feasible reservation of capacity at each of its arcs—if 

any exist—so that the flow can be routed along p and both the new 

flow and all the existing ones meet their deadline, at the minimum 

possible reservation cost for the new flow. ADCSP requires one to 

compute the WCD of a flow, which depends on several factors: 

1. the selected routing for the flow, i.e., the s − d path p in G ; 

2. the reserved rate r ij ∈ [0, w ij ] for each arc ( i, j ) ∈ p ; 

3. the latency guarantees of the schedulers employed to share 

the output links’ bandwidth among the flows (for the sake 

of simplicity, we will always assume the schedulers to be the 

same at each link, but extending the models to non-uniform 

cases is obvious); 

4. the paths and reserved rates of all the other flows q ∈ Q . 

In the following, we will denote by P (i, j) = { q : (i, j) ∈ q } ⊆ Q

the set of existing paths ( not counting the one just to be routed) 

traversing arc ( i, j ). We will also find it expedient to consider A 

partitioned into A 

′ ∪ A 

′ ′ , where A 

′ contains the arcs ( i, j ) that are 

“empty” ( P (i, j) = ∅ ) and A 

′ ′ those that contain at least one flow. 

While the natural decision variables of the problem are the 

reserved rates r ij at each link, in general the WCD rather depends 

on the guaranteed rate g ij obtained by the flow on each ( i, j ) ∈ 

p . For all the fair-queueing schedulers that we will examine, the 

guaranteed rate is at least as large as the reserved rate. In fact, 

under the assumption that the arc is not over-provisioned 

r i j ≤ w i j − r̄ i j , (1) 

where r̄ i j = 

∑ 

q ∈ P(i, j) r 
q 
i j 

( ≥ 0) is the total reserved rate of all the 

other flows at link ( i, j ), the guaranteed rates are given by the 

expression 

g i j = (w i j r i j ) / ( ̄r i j + r i j ) . (2) 

It is easy to see that g i j = w i j when r̄ i j = 0 ( ≡ ( i, j ) ∈ A 

′ ), i.e., 

the arc is “completely unloaded” and the new flow is the only 

one traversing it. Conversely, g i j = r i j when r̄ i j + r i j = w i j , i.e., the 

arc is “completely loaded”. In order for the WCD to be finite, the 

minimum guaranteed rate among all links of p must be at least as 

large as the traffic injection rate of the flow, i.e., 

g i j ≥ ρ ∀ (i, j) ∈ p. (3) 

If (3) is satisfied, the general form of the WCD of path p is 

σ

min { g i j : (i, j) ∈ p} + 

∑ 

(i, j) ∈ p 

(
θi j + l i j + n i 

)
, (4) 

where θ ij is the link latency experienced by the flow on path p 

when traversing the arc ( i, j ), i.e. the maximum scheduling delay 
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