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a b s t r a c t 

This article introduces a combinatorial optimization problem that consists of assigning tasks to machines 

and operators, and sequencing the tasks assigned to each one. Two configurations exist. Machines al- 

ternate configurations, while the operators must start and finish the process in the same configuration. 

Moreover, machines and operator have limited capacities. The sequencing of the tasks must guarantee 

that each one is performed by a machine and an operator at the same time, and it is determined in 

order to minimize an overall cost function. Two critical aspects of the problem are the need of synchro- 

nizing the machine and the operator performing each task, and the need of minimizing the changeovers, 

which are pairs of tasks done consecutively by the same machine but by different operators. The problem 

is modeled as a vehicle routing problem with two types of vehicles and with two depots. We propose 

a mixed integer programming formulation, and introduce valid inequalities to strengthen its linear pro- 

gramming relaxation. We describe separation routines for these inequalities and design a branch-and-cut 

algorithm for the problem. The algorithm is tested on a set of benchmark instances showing that it is 

able to solve to optimality instances with up to 50 customers. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

The problem addressed in this paper can be stated in a gen- 

eral way as a task scheduling problem where each task must be 

assigned to one machine and one operator. Tasks assigned to the 

same machine or operator cannot be performed in parallel, and the 

execution of a task cannot be interrupted. Thus, the tasks assigned 

to a machine or operator must be ordered. There are two config- 

urations on which machines and operators must be before and af- 

ter processing their tasks. A machine changes from an initial to a 

final configuration during the processing of its tasks, while an op- 

erator must start and finish in the same configuration. Moreover, 

machines and operator can only process a limited number of tasks. 

There is a cost for changing from a task to the next one in a sched- 

ule, a cost for each operator used, and a cost associated to each 

pair of consecutive tasks performed by the same machine but by 

different operators (changeovers). The objective of the problem is 

to assign the tasks to machines and operators, and to sequence the 

tasks assigned to each one, in order to minimize the total solution 

cost. 

The problem was inspired by some particular planning char- 

acteristics of an air transportation company operating in the Ca- 

nary Islands. A number of commercial flights (tasks) must be oper- 
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ated every day, using several aircraft (machines) and crews (opera- 

tors). All the flights must be operated between 07:00 and 23:00, 

which allows to decompose the problem in a daily base. There 

are two hub airports, TFN and LPA, where the crews’ homes are 

(the two configurations). To avoid overnight costs to the company, 

the flights assigned to a crew must allow that crew to start and 

end the day at the airport where its home is. The aircraft need 

to be checked every two days, and this operation is called short- 

time maintenance . The short-time maintenances take place during 

the night (between 23:00 and 07:00) and can only be performed at 

LPA airport, where the required equipments are located. The short- 

time maintenances have a major planning impact as they force 

that, in a particular night, half of the aircraft fleet stay at LPA while 

the other half stay at TFN. Thus, the flights assigned to each aircraft 

must be such that it starts the day in one hub airport and ends in 

the other one. This movement guarantees the short-time mainte- 

nance on each aircraft. In addition there are other constraints like 

the maximum number of flights that can be assigned to a crew. 

Salazar-González [15] studied the complex real-world problem 

posed by the air carrier in the same regional context. That prob- 

lem also involves, among other aspects, the so-called aircraft rout- 

ing and crew routing problems, where a route is a set of flights that 

can be sequentially operated. However, in the real-world problem 

the departure and arrival times for each flight are given in ad- 

vance. This fact makes the graph of connecting flights acyclic, be- 

sides being sparse, and thus dynamic programming provides effi- 

cient approaches to find min-cost routes (see for example Freling 
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et al. [8] ). Under this condition, Salazar-González [15] described a 

heuristic approach and Cacchiani and Salazar-González [4] gave an 

exact method to solve the airline problem. In this paper we study 

a more general problem, without assuming precedences among the 

tasks, or, using the air transportation example, with unfixed depar- 

ture times for the flights. 

The problem without given precedence constraints on the tasks 

can be modeled as a vehicle routing problem. A route represents a 

sequence of tasks. The tasks can be considered as customers that 

need to be served by two types of vehicles. One type of vehicles 

(type 1) represents the operators. The other type of vehicles (type 

2) represents the machines. The two machine configurations are 

called depots. There are costs associated to consecutive customers 

in a route. Such cost could represent, in the air transportation ex- 

ample, the waiting time in an airport for the crews, and the clean- 

ing operations for aircraft between two consecutive flights. There 

are limits on the maximum number of tasks in a route (e.g. a crew 

cannot operate more than 6 flights each day). There is a cost asso- 

ciated to each operator (crew) used, and to each changeover (two 

consecutive flights done by the same plane but by different crews). 

The problem consists of designing min-cost routes so that each 

customer is served by one vehicle of each type. Vehicles of type 

1 must start and end their routes at the same depot, while vehi- 

cles of type 2 must leave from one depot and arrive to the other. 

This problem is called Vehicle-and-Driver Scheduling Problem 

(VDSP) from now on in the paper. It is closely related to the well- 

known Capacitated Vehicle Routing Problem (CVRP) where there is 

one depot and one type of vehicles. See e.g. Toth and Vigo [16] for 

a survey on this problem. There are also studies on CVRP vari- 

ants that take into account several depots (see e.g. Laporte et al. 

[10,11] ). However, we are not aware of any study on the VDSP. The 

major contribution of our work is to introduce and solve the VDSP. 

We do not intend to give an exact algorithm for the actual prob- 

lem that was described in Salazar-González [15] . Instead, our ar- 

ticle introduces and investigates a new problem in a wider con- 

text without assuming, for example, a sparse graph connecting the 

customers (as happens in Salazar-González [15] and Cacchiani and 

Salazar-González [4] ). The new problem is presented as a routing 

problem with emphasis on the synchronization aspect between the 

two types of vehicles when serving a customer. The article gives a 

mathematical formulation for the problem and describes an exact 

approach to find optimal solutions. 

The remainder of the paper is structured as follows. 

Section 2 formally describes the problem and details the math- 

ematical formulation. It also presents several families of valid 

inequalities to strengthen the linear programming relaxation. 

Section 3 proposes a branch-and-cut algorithm to solve the prob- 

lem and explains the separation procedures for each family of 

inequalities. Section 4 presents computational results obtained 

when we implemented the algorithm and used it to solve different 

instances. We compare the results using the valid inequalities 

at different stages of the algorithm. Finally, the paper ends with 

conclusions in Section 5 . 

2. Mathematical formulation and valid inequalities 

In this section we formally describe the VDSP, give a mathemat- 

ical model and present the valid inequalities used to strengthen its 

linear programming relaxation. We start by setting up the notation. 

We are given n customers, two depots, and two types of ve- 

hicles. The set of customers is represented by V c = { 1 , . . . , n } and 

the set of depots by V d = { 0 , n + 1 } . Let G = (V, A ) be a complete 

directed graph with vertex set V = V c ∪ V d and arc set A = { (i, j) : 

i, j ∈ V, i � = j} . To refer to the set of arcs with tail in a set S ⊆V and 

head in V �S , we use δ+ (S) instead of { (i, j) ∈ A : i ∈ S, j �∈ S} , and 

we use δ−(S) instead of δ+ (V \ S) . The cost to pay when a vehi- 

cle of type k , for k = 1 and k = 2 , traverses an arc ( i, j ) is denoted 

by c k 
i j 
, and it is assumed to be known. All vehicles of type k have 

a capacity equal to Q 

k , which represents the maximum number of 

customers that can be served by the vehicle. We assume that the 

number of vehicles of type k available at depot d is K 

k 
d 

. 

The aim of the problem is to design feasible routes in G in order 

to visit each customer with one vehicle of each type. A route for a 

vehicle of type 1 must end at the same depot where it starts (i.e., 

it must be a cycle). A route for a vehicle of type 2 must start and 

end at different depots (i.e., it must be an open path). 

Ideally, if customers i and j are served by the same vehicle of 

type 1 then they should also be served by the same vehicle of type 

2. In the air-transportation example, this would mean that each 

crew only flies one aircraft. However, this ideal situation is not al- 

ways possible due to the capacity limits and the different types of 

routes, and in some cases a crew must change from one aircraft 

to another one. This case is called changeover , and is undesired 

by the transportation companies, not only because it forces extra 

work for the crew, but also because a delay in the first flight may 

affect other two flights. For that reason, a changeover is strongly 

penalized in the cost function with a big value M in our problem 

definition. There is also another cost N to be paid for using each 

vehicle of type 1 in a solution. This value N is usually lower than 

M . 

To illustrate the problem, Fig. 1 shows the optimal solution of 

an instance with 2 depots (nodes 0 and 19) and 18 customers 

(nodes 1 to 18). There are two vehicles of type 2 that go from one 

depot to the other (solid lines). There are two vehicles of type 1 

that make circular routes (dashed lines) from depot 0, and three 

vehicles of the same type that start and end their routes at depot 

19. Vehicles of type 1 can serve at most 4 customers, and vehicles 

of type 2 can serve at most 9. Note that a line in this figure does 

not represent a space movement, like in the CVRP, but a prece- 

dence; for example, in the air-transportation context, a line from 

i to j means that flight j will be operated after flight i (being the 

arrival airport of i equal to the departure airport of j ). Changeovers 

occur when, between two consecutive non-depot nodes in a route, 

there is a dashed line and not a solid line. For example, in Fig. 1 , 

we can observe that there is a changeover between the nodes 8 

and 17. 

2.1. Mathematical model 

We now model the VDSP, starting by defining the decision vari- 

ables. Variable x k 
i j 

takes value 1 if a vehicle of type k traverses 

an arc ( i, j ) ∈ A , and value 0 otherwise. For brevity of notation, 

we will write x k ( A 

′ ) instead of 
∑ 

(i, j) ∈ A ′ x k i j 
for each vehicle of type 

k and each subset of arcs A 

′ ⊆A . Variable y ij is used to indicate 

a changeover between nodes i and j , i.e., y ij is equal to 1 when 

x 1 
i j 

= 1 and x 2 
i j 

= 0 , and 0 otherwise. Variable w i ∈ R represents the 

position in which customer i is served, and variable z k 
i 

∈ R deter- 

mines the number of customers that a vehicle of type k has served 

immediately after serving customer i . 

Then a mathematical formulation for the VDSP is given by: 

min 

∑ 

(i, j) ∈ A 
c 1 i j x 

1 
i j + 

∑ 

(i, j) ∈ A 
c 2 i j x 

2 
i j + N 

∑ 

i ∈ V d , j∈ V c 
x 1 i j + M 

∑ 

(i, j) ∈ A 
y i j (1) 

subject to: 

x 1 (δ+ (i )) = x 1 (δ−(i )) = 1 ∀ i ∈ V c (2) 

x 1 (δ+ ( j)) = x 1 (δ−( j)) ≤ K 

1 
j ∀ j ∈ V d (3) 

x 1 (δ+ (S)) ≥
∑ 

i ∈ S 
(x 1 0 ,i + x 1 i,n +1 ) ∀ S ⊆ V c : S � = ∅ (4) 
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