An improved integer linear programming formulation for the closest $0-1$ string problem

Claudio Arbib ${ }^{\text {a }}$, Mara Servilio ${ }^{\text {b,*, }}$, Paolo Ventura ${ }^{\text {b }}$
${ }^{\text {a }}$ Dipartimento di Scienze/Ingegneria dell'Informazione e Matematica, Università degli Studi dell'Aquila via Vetoio, Coppito, I-67010 L'Aquila, Italy
${ }^{\mathrm{b}}$ Istituto di Analisi dei Sistemi e Informatica "A. Ruberti" CNR, Via dei Taurini, 19-00185, Roma, Italy

A R T I C L E I N F O

Article history:

Received 30 December 2015
Revised 18 November 2016
Accepted 19 November 2016
Available online 19 November 2016

Keywords:

Closest string problem
Branch-and-cut
Continuous relaxation

Abstract

The Closest String Problem (CSP) calls for finding an n-string that minimizes its maximum Hamming distance from m given n-strings. Recently, integer linear programs (ILP) have been successfully applied within heuristics to improve efficiency and effectiveness. We consider an ILP for the binary case (0-1 CSP) that updates the previous formulations and solve it by branch-and-cut. The method separates in polynomial time the first closure of $\left\{0, \frac{1}{2}\right\}$-Chvátal-Gomory cuts and can either be used stand-alone to find optimal solutions, or as a plug-in to improve heuristics based on the exact solution of reduced problems. Due to the parity structure of the right-hand side, the impressive performances obtained with this method in the binary case cannot be directly replicated in the general case.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Let A be an alphabet with p symbols. The Closest String-or Center String-Problem (CSP) calls for finding a string $\mathbf{x} \in A^{n}$ that better approximates a given set S of strings $\mathbf{s}^{1}, \ldots, \mathbf{s}^{m} \in A^{n}$. Approximation is measured with the Hamming distance $d(\mathbf{x}, \mathbf{y})$, that counts the number of different components in \mathbf{x}, \mathbf{y}. An optimal solution of the CSP is an \mathbf{x}^{*} that, among all strings $\mathbf{x} \in A^{n}$, minimizes the maximum distance $d\left(\mathbf{x}, \mathbf{s}^{i}\right)$ from any $\mathbf{s}^{i} \in S$.

The CSP arises in such fields as computational biology and coding theory, and is NP-hard. The alphabet A can contain two or more symbols, depending on application: for example, $p=2$ in encoding problems, $p=4$ in DNA recognition etc. In the former case we refer to binary (or 0-1) CSP.

Due to its importance, the problem has recently attracted extensive research, see e.g. [5,8-10]. Various integer linear programming (ILP) formulations have also been proposed to solve it, see [$1,6,7$], and ILP is a key factor of success for the present state-of-the-art heuristics [2,3]. Therefore, improving the performance of ILP formulations for the CSP is a way to improve the performance of those algorithms.

In this paper we focus on the binary CSP. We revise the formulation in [1] and strengthen the polyhedron Q of its continuous relaxation by the first closure of $\left\{0, \frac{1}{2}\right\}$-Chvátal-Gomory cuts

[^0](in short, $\left\{0, \frac{1}{2}\right\}$-CG cuts). We prove that when the polyhedron Q^{\prime} of the first closure is defined by the inequalities of our formulation, the points in $Q-Q^{\prime}$ can be separated in polynomial-time. We also point out that, with the formulation here considered, Q^{\prime} has different properties in the general and in the binary case: in the former, we observe that $Q=Q^{\prime}$, thus separating over Q^{\prime} is pointless; on the contrary, the cuts in Q^{\prime} are generally very effective in the binary case. Based on this analysis, we develop a branch-and-cut algorithm for the binary CSP, and test it on instances from [3]. The cuts in the first closure are often sufficient to get an impressive speed-up of CPU time.

2. An integer linear programming formulation for the general CSP

Let d denote the largest Hamming distance of the desired string \mathbf{x} from a string in the target set S. In the so-called "natural" formulation [1], \mathbf{x} is encoded by a matrix $\mathbf{Y} \in\{0,1\}^{p \times n}$ with exactly one 1 per column: the entries $y_{\alpha k}$ of \mathbf{Y} are binary decision variables that assign a symbol $\alpha \in A$ to each component x_{k} of \mathbf{x}. The problem is formulated as follows:
$\min d$
$d+\sum_{k=1}^{n} y_{s_{k}^{i} k} \geq n \quad i=1, \ldots, m$
$\sum_{\alpha \in A} y_{\alpha k}=1 \quad k=1, \ldots, n$

$$
\begin{align*}
& y_{\alpha k} \geq 0 \tag{4}\\
&-y_{\alpha k} \geq-1 \\
& y_{\alpha k} \quad \text { integer } \quad \alpha \in A, k=1, \ldots, n
\end{align*}
$$

In the i th constraint (2), s_{k}^{i} is the symbol of A occurring at the k th component of \boldsymbol{s}^{i} : hence the summation on the left-hand side counts the bits of \mathbf{x} that are equal to the corresponding bits of \boldsymbol{s}^{i}. The distance between \mathbf{x} and \boldsymbol{s}^{i} is therefore the complement of this summation to n. For instance, for $A=\{a, b, c, d\}, n=5$ and $\boldsymbol{s}^{i}=$ $a b b c d$, inequality (2) reads
$d+y_{a 1}+y_{b 2}+y_{b 3}+y_{c 4}+y_{d 5} \geq 5$
or, eliminating $y_{d 5}$ by (3) as in [1],
$d+y_{a 1}+y_{b 2}+y_{b 3}+y_{c 4}-y_{a 5}-y_{b 5}-y_{c 5} \geq 4$
The nonzero support of these inequalities does not seem to have a combinatorial structure that can be exploited to efficiently separate $\left\{0, \frac{1}{2}\right\}$-CG cuts. Then we suggest here a "dense" formulation where such cuts can easily be separated. To this aim, we encode a generic string \mathbf{s}^{i} in the same way as the \mathbf{x}, setting $s_{\alpha k}^{i}=1$ if $s_{k}^{i}=\alpha$ and 0 otherwise, for any $\alpha \in A$. The following expression
$f_{\alpha}^{i}\left(x_{k}\right)=\left(y_{\alpha k}-s_{\alpha k}^{i}\right)^{2}=y_{\alpha k}-2 s_{\alpha k}^{i} y_{\alpha k}+s_{\alpha k}^{i}$
gets value 0 if $y_{\alpha k}=s_{\alpha k}^{i}$ (that is, $x_{k}=s_{k}^{i}$) and 1 otherwise. In the latter case, $y_{\alpha k}$ differs from $s_{\alpha k}^{i}$ in exactly two cases; therefore
$f^{i}\left(x_{k}\right)=\sum_{\alpha \in A} f_{\alpha}\left(x_{k}\right)=\sum_{\alpha \in A}\left(y_{\alpha k}-2 s_{\alpha k}^{i} y_{\alpha k}+s_{\alpha k}^{i}\right)$
gets value 0 for $x_{k}=s_{k}^{i}$ and 2 otherwise. Consequently
$2 d\left(\mathbf{x}, \mathbf{s}^{i}\right)=\sum_{k=1}^{n} f^{i}\left(x_{k}\right)=\sum_{k=1}^{n} \sum_{\alpha \in A}\left(y_{\alpha k}-2 s_{\alpha k}^{i} y_{\alpha k}+s_{\alpha k}^{i}\right)$
Using the expression above and observing that
$\sum_{k=1}^{n} \sum_{\alpha \in A} s_{a k}^{i}=n$
we can replace (2) by
$2 d+\sum_{k=1}^{n} \sum_{\alpha \in A}\left(2 s_{\alpha k}^{i}-1\right) y_{\alpha k} \geq n \quad i=1, \ldots, m$
Note that the coefficient $\left(2 s_{\alpha k}^{i}-1\right)$ of any variable $y_{\alpha k}$ in inequality (6) is ± 1 : therefore we refer to (6) as to dense inequalities. Because of hyperplanes (3), the polyhedron (3)-(6) has dimension $(p-1) n+1$.

3. Reformulation for the binary case

Assuming $A=\{0,1\}$, the components of \mathbf{Y} and \mathbf{S}^{i} of Section 2 become
$y_{1 k}=x_{k}, \quad s_{1 k}^{i}=s_{k}^{i}, \quad y_{0 k}=1-x_{k}, \quad s_{0 k}^{i}=1-s_{k}^{i}$
where complementation derives from the assignment equations (3). The Hamming distance between \mathbf{x} and \mathbf{s}^{i} is then directly expressed by
$d\left(\mathbf{x}, \mathbf{s}^{i}\right)=\sum_{k=1}^{n}\left[s_{k}^{i}\left(1-x_{k}\right)+\left(1-s_{k}^{i}\right) x_{k}\right]$
with $\mathbf{x} \in\{0,1\}^{n}$. Therefore, a string \mathbf{x} whose distance from any \mathbf{s}^{i} is at most d must fulfill
$x\left(N_{0}^{i}\right)-x\left(N_{1}^{i}\right)=\sum_{k \in N_{0}^{i}} x_{k}-\sum_{k \in N_{1}^{i}} x_{k} \leq d-\sum_{k=1}^{n} s_{k}^{i}$
where N_{0}^{i} and N_{1}^{i} denote the set of indexes k such that $s_{k}^{i}=0$ and $s_{k}^{i}=1$, respectively. Rewriting the above condition with $d=2 \delta$ and $n^{i}=\sum_{k=1}^{n} s_{k}^{i}$, we get our formulation:
$\min \delta$

$$
\begin{align*}
2 \delta-\sum_{k \in N_{0}^{i}} x_{k}+\sum_{k \in N_{1}^{i}} x_{k} & \geq n^{i} \quad i=1, \ldots, m \tag{8}\\
x_{k} & \geq 0 \tag{9}\\
-x_{k} & \geq-1 \tag{10}\\
x_{k} & \text { integer } \quad k=1, \ldots, n
\end{align*}
$$

Just like (6), inequalities (8) have the x coefficients in $\{-1,+1\}$ and are again called dense. We distinguish between odd and even dense inequalities according to the parity of the right-hand side n^{i}. Note that in the non-binary CSP, all dense inequalities have the same parity (in fact, in this case n^{i} is always equal to n). In the binary CSP, instead, the parity of the right-hand sides is instancedependent. In the test bed used for our computational experiments we observed odd and even n^{i} 's quite randomly distributed. This fact plays a crucial role in the strength of the method here proposed, as we will see next.

4. $\left\{0, \frac{1}{2}\right\}$-Chvátal-Gomory cuts for the binary case

Unlike the general Chvátal-Gomory cuts, $\left\{0, \frac{1}{2}\right\}$-CG cuts are not derived from the polyhedron Q obtained by linearly relaxing the integer formulation but from the particular system of linear inequalities used to describe Q. In general, let \mathcal{S} denote the system of linear inequalities of an ILP formulation:
$\mathcal{S}=\left\{a^{i} y \geq b^{i}\right.$ with $a^{i} \in \mathbb{Z}^{m}$ and $b^{i} \in \mathbb{Z}$ for all $\left.i \in I\right\}$,
and define the feasible set and its linear relaxation, respectively, as
$P=\left\{y \in \mathbb{Z}^{n}: y\right.$ satisfies $\left.\mathcal{S}\right\} \quad Q=\left\{y \in \mathbb{R}^{n}: y\right.$ satisfies $\left.\mathcal{S}\right\}$
A $\left\{0, \frac{1}{2}\right\}$-CG cut for P is obtained by combining inequalities in \mathcal{S} with multipliers that are either 0 or $\frac{1}{2}$, so that the coefficients at the left-hand side are integer and the right-hand side is not. In this way, one can round the right-hand side up to the closest integer, and get an inequality which is valid for P and not for Q. Equivalently, a $\left\{0, \frac{1}{2}\right\}$-CG cut $a x \geq b$ can be derived from a linear combination of $a^{i} \mathbf{x} \geq b^{i}$ with $\lambda^{i} \in\{0,1\}$ such that
$a_{j}=\sum_{i \in I} \lambda^{i} a_{j}^{i}$ is even for $j=1, \ldots, n b=\sum_{i \in I} \lambda^{i} b^{i}$ is odd
Let \mathcal{S}^{\prime} contain all the $\left\{0, \frac{1}{2}\right\}$-CG cuts that can be derived from the inequalities of \mathcal{S}. Such a system is called the first $\left\{0, \frac{1}{2}\right\}$-CG closure of \mathcal{S}.

Take $\overline{\mathbf{y}} \in Q$, and consider the problem of separating $\overline{\mathbf{y}}$ with a cut in \mathcal{S}^{\prime}, that is, finding an inequality of \mathcal{S}^{\prime} that is violated by $\overline{\mathbf{y}}$, or conclude that \mathcal{S}^{\prime} does not contain such an inequality. The problem can be rephrased as follows:
Problem 1. Find $\lambda^{i} \in\{0,1\}$ fulfilling (11) and such that
$\operatorname{viol}(\lambda, \overline{\mathbf{y}})=-\sum_{j=1}^{n}\left(\frac{1}{2} \sum_{i \in I} \lambda^{i} a_{j}^{i}\right) \bar{y}_{j}+\left\lceil\frac{\sum_{i \in I} \lambda^{i} b^{i}}{2}\right\rceil>0$.
Rewrite the violation as
$\operatorname{viol}(\lambda, \overline{\mathbf{y}})=-\frac{1}{2} \sum_{i \in I} \lambda^{i} \sum_{j=1}^{n} a_{j}^{i} \bar{y}_{j}+\frac{1}{2}\left(\sum_{i \in I} \lambda^{i} b^{i}+1\right)$

https://daneshyari.com/en/article/4959093

Download Persian Version:
https://daneshyari.com/article/4959093

Daneshyari.com

[^0]: * Corresponding author. Mara Servilio

 E-mail addresses: claudio.arbib@univaq.it (C. Arbib), mara.servilio@iasi.cnr.it (M. Servilio), paolo.ventura@iasi.cnr.it (P. Ventura).

