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a b s t r a c t

This paper addresses a variant of the Euclidean traveling salesman problem in which the traveler visits a
node if it passes through the neighborhood set of that node. The problem is known as the close-enough
traveling salesman problem. We introduce a new effective discretization scheme that allows us to
compute both a lower and an upper bound for the optimal solution. Moreover, we apply a graph re-
duction algorithm that significantly reduces the problem size and speeds up computation of the bounds.
We evaluate the effectiveness and the performance of our approach on several benchmark instances. The
computational results show that our algorithm is faster than the other algorithms available in the lit-
erature and that the bounds it provides are almost always more accurate.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

This paper concerns the close-enough variant CETSP of the
classic traveling salesman problem (TSP). Given a set of target
points in any Euclidean space, the TSP consists in determining a
minimum length tour that starts and ends at a ”depot” while vis-
iting each target point exactly once. In CETSP to each target point v
is associated a neighborhood, that is a compact region of the space
containing v. In fact CETSP consist in finding the shortest tour that
starts and ends at the depot and intersects each neighborhood
once. Usually, there are no constraints on the shape of the
neighborhood, on the other hand the disc shape is the mostly
adopted one, thus we keep this assumption in our paper.

The CETSP has a number of practical applications. For instance,
let us consider a district where a certain number of radio fre-
quency identification (RFID) readers are located to record elec-
tricity or water or gas consumption. Each meter reader plays the
role of a target point and its information can be relayed within a
fixed range r. Consequently, the neighborhood is defined as a disc
of radius r centered at each target point. The reading process of the
RFID reader meters can be performed by flying a drone within the
neighborhood of each target point, speeding up the classic door-
to-door reading. Other applications of CETSP arise in the robot

monitoring of wireless sensor networks [13] and in the context of
Unmanned Aerial Vehicles for aerial forest fire detection or mili-
tary surveillance.

The CETSP was introduced by Gulczynski et al. [7] and the
authors proposed six heuristics to solve the problem under the
assumption that all neighborhoods were discs of the same radius.
For the same problem, Dong et al. [4] introduced two heuristics
based on the concept of supernodes. A supernode S is a set of
points of the plane such that for each target point v there exists at
least one point in S whose distance from v is at most r, the radius
of the disc. Supernodes are generated by using convex hull and
clustering techniques. A mixed integer nonlinear programming
formulation of CETSP was provided too, but it was not specifically
used in algorithm design. Mennell et al. [10,11] proposed another
heuristic based on the intersection of the neighborhoods, named
Steiner zone. Yuan et al. [13] developed an effective evolutionary
approach which was able to find the shortest tour on all the
benchmark instances, although with large computation time.
Other heuristics were proposed by Shuttleworth et al. [12] to solve
the CETSP over a street network for the specific RFID meter reader
application described above. Finally, some special cases of
CETSP were solved by polynomial-time approximation algorithms
introduced by Arkin and Hassin [1], Mata and Mitchell [9] and
Dumitrescu and Mitchell [5].

In this paper we introduce an approach to compute upper and
lower bounds for the CETSP problem by discretizing the solution
space and solving on the resulting graph the classic Generalized
TSP problem. Starting from the discretization approaches already
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proposed in the literature, we introduce a new effective dis-
cretization scheme which provides better bounds, thanks to a
novel adaptive approach to select appropriately the number of
discretization points to be used for each neighborhood. Finally, we
apply a graph reduction algorithm that significantly reduces the
size of the Generalized TSP problem to solve, allowing us to in-
crease the number of discretization points without penalizing the
performance of our approach in terms of CPU time. The compu-
tational results, carried out on benchmark instances, reveal that
our approach outperforms the ones proposed in [2].

The remainder of the paper is organized as follows. Section 2
introduces the definitions and the notations that are used
throughout the paper. Sections 3 and 5 present our discretization
scheme and our graph reduction algorithm, respectively. The
mixed-integer programming model (MIP) is described in Section 6
and it is followed by the computational results in Section 7. Finally,
conclusions are presented in Section 8.

2. Definitions and notation

Let N be a set of points in a two-dimensional plane, with
| | =N n, and let p0 be the depot point. We will refer to the elements
in N as the target points. To each target point v is associated a
sphere Cv with center v and radius rv (Fig. 1(a)) which will be
referred to as the neighborhood N(v) of v. W.l.o.g., we suppose that

∉ ( ) ∀ ∈p N v v N0 . The CETSP consists in finding a shortest tour *T
that starts from the depot p0, intersects every neighborhood N(v)
(in any order), and ends in p0. The points of any tour T where a
direction change occurs are the turn points and any tour can be
uniquely identified through its turn points. For instance, in Fig. 1
(b) it is shown a feasible tour T for the CETSP which is identified by
the turn points p1, p2 and p3. Given a couple of turn points pi and
pj, the length of the edge ( )p p,i j is given by the Euclidean distance
between pi and pj. The total cost of a tour T is denoted by w(T) and
it is equal to the sum of the edge lengths in T.

Given the neighborhood N(v) depicted in Fig. 1(a), let di and dj
be two points of the boundary of Cv. We denote by d d,i j the chord

between these two points and byd d,i j the circular arc from di to dj
in the clockwise direction. For any additional definition and no-
tation on the graphs we refer to [3].

3. The perimetral discretization scheme

Since each neighborhood N(v), ∈v N , contains an infinite

number of turn points, then the number of feasible tours for
CETSP is infinite as well. However, a finite number of turn points
occur for any feasible tour. For this reason, we can associate to
each feasible solution a discrete set of points. More in detail, each
neighborhood N(v) is discretized by using a fixed number k of

discretization points. We denote by ^( )N v such set of points. Con-

sequently, a graph = ( )G V E, , where = ⋃ ^( )∈V N vv N and
= {( ) ∈ ( ) ∈ ( ) ≠ }E x y x N u y N v u v, : , , , is build. It is easy to see that

the weight of any tour T̂ , that starts and ends at the depot and that
visits exactly one discretization point in each neighborhood, is an

upper bound to ( *)w T . From now on, we will denote by T and T̂ the
feasible tours of the CETSP computed by using the points of N(v)

and of ^( )N v , ∈v N , respectively.
In order to have an upper bound of ( *)w T as tight as possible,

we compute the shortest tour ^*
T in G, namely we solve the Gen-

eralized TSP problem (GTSP) on G. The quality of the bound ^*
T for

( *)w T heavily depends on the number of points used to carry out
the discretization and on their placement in each neighborhood.
Obviously greater the number of discretization points tighter will

be ( ^*
)w T , but, on the other hand, greater will be the size of G with

increasing computational cost to calculate ^*
T . For this reason it is

necessary to find an appropriate trade-off between the quality of
the upper bound and the time spent to compute it. Moreover, it is
crucial to use a discretization scheme that minimizes the dis-
cretization error carried out in each neighborhood due to the use
of discretization points. More in details, let us consider the ex-
ample in Fig. 2 where = { }N v v v, ,1 2 3 and *T is the optimal tour for
the CETSP, identified by the turn points p p p, ,1 2 3 and the depot p0.
Note that the turn points of *T are always on the boundary of the
spheres (see Proposition 1 in the sequel). Each neighborhood is
discretized by using only k¼2 discretization points placed on the
corresponding circumference.

Let us build now the walk = { }Q p p d p p d p p p, , , , , , , ,0 1 1 1 2 2 2 3 0 . In
practice Q is built by following the edges of *T and, for each turn

point ∈p Ci vi
, the closest discretization point ∈ ^( )d N vi i is detected

and the chord p d,i i is crossed twice. We define the discretization

error ξ( )vi as two times the length of p d,i i. Thus ξ( )vi represents the

error in ^( )N vi with respect to *T , due to the choice of the dis-
cretization points. It is easy to see that:

∑ ξ( ) = ( *) + ( )
( )∈

w Q w T v
1v N

Since Q starts and ends at the depot p0 and visits one

Fig. 1. (a) Neighborhood N(v) of the target point v. (b) A feasible tour for the CETSP problem.
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