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We consider the generalized biobjective traveling salesperson problem, where there are a number of
nodes to be visited and each node pair is connected by a set of edges. The final route requires finding the
order in which the nodes are visited (tours) and finding edges to follow between the consecutive nodes
of the tour. We exploit the characteristics of the problem to develop an evolutionary algorithm for
generating an approximation of nondominated points. For this, we approximate the efficient tours using
approximate representations of the efficient edges between node pairs in the objective function space.
We test the algorithm on several randomly-generated problem instances and our experiments show that
the evolutionary algorithm approximates the nondominated set well.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The generalized multiobjective traveling salesperson problem
(MOTSP) finds efficient tours that visit all the nodes and return to
the starting point under multiple objectives. In this problem, we
need to determine both the order of visiting the nodes and the
edge to use between consecutive node pairs. Finding the efficient
edges between node pairs is a multiobjective shortest path pro-
blem (MOSPP). The overall problem can be considered as a gen-
eralized MOTSP with multiple efficient edges between nodes.

The generalized MOTSP can be considered in many domains;
route planning of air vehicles, trucks, trains, and vessels. For the
route planning problem of trains, the terminals can be considered
as nodes and the alternative paths between terminals can be
considered as edges between node pairs. For the route planning
problem of air vehicles, the targets they aim to visit can be con-
sidered as nodes and the alternative paths between target pairs
can be considered as edges. Minimizing total distance traveled,
fuel consumption, detection avoidance, duration of travel are some
of the objectives that can be used.

In the MOTSP literature, each pair of nodes has been assumed
to be connected by a single edge. In a multiobjective context,
however, there are typically many efficient edges between pairs of
nodes; each edge representing a different tradeoff between ob-
jectives. A more general and realistic MOTSP is to consider the
efficient tours that are composed of efficient edges. The differences
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of MOTSP with multiple efficient edges and classical MOTSP are
discussed in Tezcaner and Kéksalan [20].

The classical MOTSP and MOSPP are NP-hard [4]. There are a
number of studies that develop heuristics for the classical MOTSP.
Paquete and Stiitzle [17] develop a two-phase local search method,
Jaszkiewicz and Zielniewicz [6] develop an algorithm that uses
path relinking and Pareto local search, Lust and Teghem [13]
propose a new two-phase Pareto local search for MOTSP and Lust
and Jaszkiewicz [12] develop speed-up techniques for this heur-
istic for large MOTSPs. Ke et al. [7] propose a memetic algorithm
for multiobjective combinatorial optimization problems and apply
the algorithm to the MOTSP. Ozpeynirci and Kéksalan [15,16]
study MOTSPs that have special structures. For a review on heur-
istics developed for MOTSP, we refer the reader to Lust and Te-
ghem [13]. The generalized biobjective traveling salesperson pro-
blem (BOTSP) is studied in Tezcaner and Koéksalan [20] and Tez-
caner Oztiirk and Koksalan [21]. They develop interactive algo-
rithms that find the most preferred solution of a decision maker
(DM) under linear preference functions [20] and quasiconvex
preference functions [21]. They apply the algorithms on general-
ized BOTSPs.

In this study, we address the generalized BOTSP with a heur-
istic approach. We need to solve both the biobjective shortest
path problem (BOSPP) and the BOTSP with multiple efficient
edges between nodes. Since both BOTSP and BOSPP have been
shown to be NP-hard, heuristic algorithms are required for ad-
dressing large instances. We develop an approach that generates
an approximation for the nondominated set of the generalized
BOTSP.
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We define the problem in Section 2 and develop the algorithm
in Section 3. We give computational results in Section 4 and pre-
sent our conclusions in Section 5.

2. Problem definition

We first present some notation and definitions that are adapted
from Tezcaner and Kéksalan [20].

Let x denote the decision variable vector, X denote the feasible
set, Z denote the image of the feasible set in objective function
space, and point z(x):(zl(x), zz(x),.“,zp(x)) be the objective func-
tion vector corresponding to the decision vector x, where p is the
number of objectives and zj(x) is the performance of solution x in
objective k. We assume, without loss of generality, that all ob-
jectives are to be minimized. A solution xeX is said to be efficient if
there does not exist x'eX such that z,(x)<zx(x) k=1, ..., p and
k(X" < zx(x) for at least one k. If there exists such an x’, x is said to
be inefficient. The set of all efficient solutions constitute the effi-
cient set.

If x is efficient, then z(x) is said to be nondominated, and if x is
inefficient, z(x) is said to be dominated. The set of nondominated
points constitute the nondominated set. A nondominated point
z(x) is a supported nondominated point if there exists a positive
linear combination of objectives that is minimized by x. Other-
wise, z(x) is an unsupported nondominated point. We define an
extreme nondominated point as a supported nondominated point
that has the minimum possible value in at least one of the
objectives.

For the generalized BOTSP, we first find all efficient edges be-
tween node pairs utilizing algorithms developed for BOSPP.
MOSPP has been studied well in the literature (see for example
[5,18]). Evolutionary algorithms (EAs) have also been developed
for MOSPP (see for example [14]). After finding all efficient edges
connecting each node pair, we solve the formulation given below
for the generalized BOTSP (as in [21]) to find efficient tours that
use a subset of the efficient edges.

Let G=(N,E) be an undirected graph with node set
N ={1,2, ...} and edge set E, and let R; be the index set of efficient
edges between node pair (i, j). Let the binary decision variable x;;
take value 1 if the rth efficient edge connecting nodes (i, j) is used,
and 0 otherwise for r € Ry;, cf; denote the kth objective value of the
rth efficient edge between nodes i and j, and
P={d,j)lieN,jeN,i+#j} be the set of all node pairs. The for-
mulation of the problem is as follows:

Min zx)= Y Y chxy

(i,j)eP reRjj €Y

Min @) = Y Y cxy

(i.j)eP reRjj 2)
Subject to:
> Y xj=1ieN
jeN reRjj 3)
> > xp=1jeN
ieN reRjj (4)

> > > xp=1UcN2<|UKINI-2
ieU jeN[U reR;; (5)

x;ir€{0, 1} (, j)eP, reR;; (6)

Here we assume that c,>0 for k = 1,2 and r € Ry; i.e. the values

Fig. 1. Generalized BOTSP example.

of the edges constituting these two objectives are assumed to take
nonnegative values. Eq. (3) ensures that one edge leaving each
node is selected and Eq. (4) guarantees an edge entering each node
is selected. Constraint (5) is a standard traveling salesperson pro-
blem subtour elimination constraint that assures at least one
connection between two separate subsets of the nodes.

An efficient solution corresponds to the efficient tour of the
traveling salesperson problem (TSP) together with the specific
efficient edges used between the consecutive nodes visited by that
tour. Moving from node i € N to node j € N, there may be many
efficient edges. Let = be a cyclic permutation of set N and IT be the
set of all tours. As we have many edge options between the nodes,
all # €Il can be traversed by a number of combinations of the
efficient edges between its connected nodes. In the rest of the
paper, to differentiate among different edge options between two
nodes, we denote the rth efficient edge between nodes i and j as
e  where reR; and the set of edges as

E= {em, €122+ €N|,INI= 1, [Ryvy w1 } Similarly, we denote the uth ef-

ficient edge combination for tour = as t,, where ueU,, and its kth
objective function value as CX, for k = 1,2. To demonstrate, con-
sider the example in Fig. 1 with four nodes. The values written in
parentheses next to each edge are the first and second objective
function values, respectively, of the corresponding efficient edge.
Between node pairs 1-4, 2-4, and 3-4, we have single connections
(single efficient edges). Therefore, |R4|=|Ry4|=|R34|=1. There are two
efficient edges between node pairs 1-2 and 2-3 (|Rjz|=|Ry3|=2) and
three efficient edges between node pair 1-3 (|R;3|=3). For example,
the objective function values for the efficient edge between node
pair 1-4 are ¢}4;=2 and ¢ =7, using our notation. We have three
possible distinct tours to visit the four nodes, IT = {1-2-3-4-1, 1-2-
4-3-1, 1-3-2-4-1}. For tour 1-2-3-4-1, there are four different
routes considering the different edges between the nodes (all
possible combinations of the two edges between node pair 1-2,
two edges between node pair 2-3, one edge between node pair
3-4, and one edge between node pair 4-1). When all these com-
binations are enumerated and their objective function values are
calculated, all four points turn out to be nondominated with the
following objective function values: ¢_,_3_4_11=10,G_3_3_4_1:=17,
Qoa3-4-12=12, Gpi3.4-12=16, Q5 3.4-15=14, G5 3_4.13=13,
and G_,_3_4_14=16, G_,_3_4_14=12. Therefore, the nondominated
set of tour 1-2-3-4-1 is composed of four points; (10,17), (12,16),
(14,13) and (16,12).

When we enumerate the solutions of tour 1-2-4-3-1 and find
their objective function values, we obtain six points, four of which
are nondominated, disregarding the nondominated points of other
tours. Similarly, for tour 1-3-2-4-1, we obtain six points, five of
which are nondominated, again disregarding the nondominated
points of other tours. When we evaluate all points of all tours
together, some points turn out to be dominated. In our case, the
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