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a  b  s  t  r  a  c  t

Regularization  is  a well-known  technique  in  statistics  for model  estimation  which  is used  to  improve  the
generalization  ability  of the estimated  model.  Some  of the  regularization  methods  can  also  be used  for
variable selection  that  is especially  useful  in  high-dimensional  problems.  This  paper  studies  the  use  of
regularized  model  learning  in  estimation  of  distribution  algorithms  (EDAs)  for continuous  optimization
based  on  Gaussian  distributions.  We  introduce  two  approaches  to the regularized  model  estimation
and  analyze  their  effect  on  the  accuracy  and  computational  complexity  of  model  learning  in  EDAs. We
then  apply  the  proposed  algorithms  to  a number  of  continuous  optimization  functions  and  compare  their
results with  other  Gaussian  distribution-based  EDAs.  The  results  show  that  the  optimization  performance
of  the  proposed  RegEDAs  is  less  affected  by the  increase  in the  problem  size  than  other  EDAs,  and  they
are  able  to  obtain  significantly  better  optimization  values  for  many  of  the functions  in  high-dimensional
settings.

©  2012  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Estimation of distribution algorithms (EDAs) [1–6] are a class
of evolutionary algorithms based on estimating a probability dis-
tribution model for the space of possible candidate solutions to the
given problem. This probabilistic model, which is learnt from a set
of candidate solutions selected according to their quality, is used to
generate new candidate solutions in the search space.

Assuming that the method used for generating new solutions
is more likely to sample regions of the search space that have a
higher probability, the ultimate goal of the model learning step in
EDAs is to estimate probabilistic models that assign higher prob-
abilities to a close neighborhood of optimal problem solutions
(specified by the corresponding fitness function). It is almost impos-
sible to estimate such a model directly at one go, especially for
high-dimensional problems with a complex structure and high
dimensionality.

Iterative model learning and factorized estimation of the prob-
ability distribution are two main techniques employed to facilitate
model learning in EDAs. If the model is estimated across several
generations, the algorithm can visit more regions of the search
space and gradually improve its estimation as, due to the limi-
tation of computational resources, algorithms have to work with
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a finite population of solutions. Techniques like univariate or
bivariate factorization, or more generally, multivariate Bayesian
network learning, which imposes a factorization over problem vari-
ables, are able to estimate the joint probability distribution as the
product of simpler factors.

The use of probabilistic modeling in EDAs allows these algo-
rithms to better exploit the information obtained up to the current
stage of the search, in order to speed up convergence. Many of
the probabilistic models employed in EDAs can also approximate
the relationships or linkages between variables which is neces-
sary for finding the optimal solutions to many problems. The
successful application of EDAs to many real-world problems in dif-
ferent domains like: machine learning [7,8], bioinformatics [9–11],
scheduling [12–14],  industrial design and management [15,16],
protein folding [17,18],  software testing [19] and composite mate-
rials [20] have proved their usefulness in practice.

Despite promising performance for solving many real-world
problems, there are still shortcomings in the behavior of EDAs
that have made them the topic of active research. Several studies
have tried to analyze the behavior of EDAs [21–26].  However, their
results are mainly based on impractical assumptions or are limited
to only specific problems. In continuous domains, especially, which
is the scope of this paper, there are many difficulties with model
estimation that prevent EDAs from exhibiting the expected behav-
ior.

The ability of the chosen probabilistic model to fit the solutions
of a given problem, which is referred to as model capacity [27], can
greatly affect model estimation. Thanks to their analytical proper-
ties, Gaussian distributions have been the probabilistic model of
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choice in most continuous EDAs [28–30,2,31]. However, a robust
estimation of Gaussian distribution relies on acquiring adequate
statistics that are often not available from the population of con-
tinuous EDAs. This will usually cause EDAs to fall into premature
convergence (or rather stalemate). To overcome this shortcoming,
techniques like variance scaling [32–34] or eigenvalue resetting
[35,36] have been proposed in the literature.

Regularization techniques [37–40] are widely used in statistics
and machine learning to obtain a more robust estimation of prob-
abilistic models with lower prediction error. Regularized model
estimation attempts to decrease the general prediction error of the
estimated model by reducing the high variance caused for the pre-
diction of new and unseen samples at the cost of introducing a little
bias into the model [41,42]. The large-scale application of these
techniques for model estimation, especially in high-dimensional
problems where the number of samples is small compared with
the number of variables, has proved useful.

Model estimation in EDAs has some characteristics that moti-
vate the use of regularization techniques. Lack of adequate statistics
can cause the estimated model to become highly biased to spe-
cific regions of the search space. This reduces its generalization
ability which is an important factor when sampling the model.
The use of regularization can reduce the generalization error of
the estimated model in EDAs. Another important issue is the EDA
scalability with regard to problem size. Estimating the probability
distribution model of huge search spaces requires large population
sizes. Since the model estimation and sampling parts of EDAs are
very time-consuming, algorithm performance will decline steeply
if population sizes are large, not to mention the memory con-
straints regarding large datasets. Being able to estimate a model
of comparable quality using much smaller populations is a major
requirement in these algorithms.

Very recently, regularization has been used in EDAs for dis-
crete optimization. Yang et al. [43] used regularized regression in
the context of a Bayesian optimization algorithm [44] to obtain a
reduced set of candidate parents for each variable before searching
for the correct Bayesian network structure. Luigi et al. [45] proposed
the use of regularized logistic regression to learn the structure of
the Markov network in the DEUM framework [46]. In a different
context, Karshenas et al. [47] studied some of the methods for
integrating regularization techniques into the model estimation of
continuous EDAs.

This paper analyzes some of the methods to regularized model
learning in EDAs and shows how they can be applied to continuous
optimization in high-dimensional settings. The rest of the paper is
organized as follows. Section 2 reviews some of the background
material about continuous EDAs and regularization techniques,
used in other sections. Section 3 discusses the incorporation of dif-
ferent regularization techniques into EDAs and studies their effect
on model estimation using synthetic data. The results of apply-
ing the proposed algorithms on different well-known optimization
functions are presented in Section 4. Finally, the conclusions and
future perspectives are given in Section 5.

2. Background

2.1. Multivariate Gaussian distribution

A joint multivariate Gaussian distribution (MGD) for n random
variables X1, . . .,  Xn is determined with two overall parameters:
N(�, ˙), where � is an n-dimensional vector of mean values for
each variable, and  ̇ is a n × n symmetric and positive semidefinite
covariance matrix. The total number of individual parameters (free
parameters) that have to be estimated in order to determine an
MGD  is (n2 + 3n)/2, i.e. of O(n2) complexity.

Positive definite matrices are interesting since they are full-
ranked and non-singular, implying that their inverse exists. The
inverse of a positive definite covariance matrix, which is called
the precision or concentration matrix, represents partial covarian-
ces between variables and any zero entry in this matrix implies
that the corresponding two  variables are conditionally independent
given all other variables. Therefore, the zero pattern of the preci-
sion matrix directly induces the graphical structure of a Markov
network. The positive definiteness of the covariance matrix also
allows for a unique triangular decomposition, known as Bartlett or
Cholesky decomposition [48], that can be used to generate samples
from the corresponding MGD. These types of sampling algorithms
have also been extended to work for MGDs with positive semidef-
inite matrices.

In many application domains, the covariance matrix of MGD  is
obtained with maximum likelihood (ML) estimation using a dataset
of N samples, which is denoted with S (assuming row-wise vectors)

S = 1
N − 1

N∑
i=1

(xi − x)T(xi − x), (1)

where x is the ML  estimation of �. However, the covariance matri-
ces obtained with ML  estimation (Eq. (1))  usually result in a poor
generalization of MGD  [42,49]. For many applications, the covari-
ance matrix should be positive definite or at least the partial
correlations between the variables should be known. Therefore,
several techniques for improving the estimation of the covariance
matrix or its inverse have been proposed, some of which will be
discussed in the following sections.

2.2. Estimation of distribution algorithms

Algorithm 1 shows the basic steps taken by an EDA for opti-
mization. The algorithm starts from an initial population (step 1),
which is usually generated randomly, though other techniques are
applicable. In each generation, after selecting a subset of solutions
according to their fitness values, a probability distribution model
�̂g(x) is learnt from the selected solutions to encode the general
characteristics of these solutions (step 6). A set of new candidate
solutions to the optimization problem is then generated using a
sampling algorithm, which is incorporated into the EDA population
(steps 7 and 9). This procedure is repeated until one of the stopping
criteria (e.g. maximum number of generations, optimal solution(s),
population convergence) is met (step 4).

Algorithm 1. The basic steps of an estimation of distribution algo-
rithm

Estimation of Distribution Algorithm
Inputs:

A representation of solutions
An objective function f

1 P0← Generate initial population according to the given representation
2 F0← Evaluate individuals of P0 using f
3  g ← 1
4 while termination criteria are not met do
5 Sg← Select a subset of Pg−1 according to Fg−1 using a selection mechanism
6  �̂g (x) ← Estimate the probability of solutions in Sg

7 Qg← Sample �̂g (x) according to the given representation
8 Hg← Evaluate individuals of Qg using f
9  Pg← Incorporate Qg into Pg−1 according to Fg−1 and Hg

10 Fg← Update Fg−1 according to the solutions in Pg

11 g ← g + 1
12 end while

Output: The best solution(s) in Pg−1
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