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a b s t r a c t 

Longstaff–Schwartz’s least squares Monte Carlo method is one of the most applied numerical methods 

for pricing American-style derivatives. We examine the algorithms regression step, demonstrating that 

the OLS regression is not the best linear unbiased estimator because of heteroscedasticity. We prove 

the existence of heteroscedasticity for single-asset and multi-asset payoffs numerically and theoretically, 

and propose weighted-least squares MC valuation method to correct for it. An extensive numerical study 

shows that the proposed method produces significantly smaller pricing bias than the Longstaff–Schwartz 

method under several well-known price dynamics. An empirical pricing exercise using market data con- 

firms the advantages of the improved method. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

The problem of pricing American-style derivatives has been ex- 

tensively examined over the past 40 years. 1 A long series of pa- 

pers have focused on the approximation of the conditional ex- 

pected payoff to the option holder from continuation. While they 

all use regression methods in a dynamic programming context, 

they have distinctive features. Carriere (1996) estimates the con- 

tinuation value along each simulated path by employing spline 

regressions and regressions with a local polynomial smoother, 

while Tsitsiklis and Van Roy (2001) and Longstaff and Schwartz 

(2001) employ the ordinary least squares (OLS) regression. 

The regression-based methods for pricing American options are 

centered on the least squares Monte Carlo (LSMC) method de- 

scribed in Longstaff and Schwartz (2001) . Stentoft (2014) justified 

the widespread use of LSMC by noting that it has the smallest 

∗ Corresponding author. 

E-mail addresses: fabozzi321@aol.com , frank.fabozzi@edhec.edu (F.J. Fabozzi). 
1 Recently, several important applications emerged that have successfully em- 

ployed the LSMC algorithm in fields other than the American option pricing prob- 

lem. Jarrow, Li, Liu, and Wu (2010) priced callable bonds via the LSMC method, 

showing that the same technique can be applied to mortgage-backed securities. 

Carmona and Ludkovski (2010) utilised the LSMC for optimal switching models with 

inventory to evaluate energy storage facilities. Broadie and Detemple (1996) ; 2004 ); 

Glasserman (2003) and Detemple (2005) provide reviews of the literature related 

to this issue. 

absolute bias and less error accumulation when compared to other 

regression-based algorithms. Longstaff and Schwartz (2001) proved 

the convergence for problems with one state variable and only 

one exercise date (except maturity). Clement, Lamberton, and Prot- 

ter (2002) showed that, for a given set of basis functions, the er- 

ror resulting from Monte Carlo simulation goes to zero when the 

number of paths goes to infinity. Within a multi-dimensional and 

multi-period setting, Stentoft (2004b) proved convergence as the 

number of basis functions M and the number of paths n s go to 

infinity with M 

3 / n s → 0. Studying the LSMC near the beginning 

of the contract when the time-step size approaches zero, Mostovyi 

(2013) found that the regression problem is ill-posed, making the 

LSMC unstable. 

On the computational side, Moreno and Navas (2003) ; Stentoft 

(2004a) and Areal, Rodrigues, and Armada (2008) assessed the 

pricing performance of LSMC under different numbers of simulated 

paths, payoff structures and polynomial families in the regressions. 

They argued that the performance of LSMC is virtually the same for 

vanilla options when different polynomial families are employed 

but that their selection has a major impact in the case of exotic 

options. Wang and Caflisch (2010) modified LSMC to calculate di- 

rectly the delta and the gamma parameters. 

The literature has shown that the pricing bias in the LSMC is 

a combination of the downward bias caused by the approximation 

of this curve by a finite low-dimensional polynomial, and the up- 

ward bias caused by using the same paths to estimate the optimal 

stopping time (see, among others, Létourneau & Stentoft, 2014 ). 

Létourneau and Stentoft (2014) employed the linear inequality 
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constrained least squares (ICLS) method to impose monotonicity 

and convexity properties on the continuation value curve, as the 

theoretical results suggest. They showed that the ICLS algorithm 

is less prone to curve-overfitting compared to LSMC and thus the 

upward pricing bias is substantially reduced. 

Another improvement for the Monte Carlo regression used 

in American option pricing has been described in Belomestny 

(2011) and Belomestny, Dickmann, and Nagapetyan (2015) where 

they apply local polynomial kernel regression to the problem of 

pricing Bermudan options. The idea is to generate an additional 

independent set of Monte Carlo sample paths to the sample al- 

ready used in the prior regression step and then average the pay- 

offs stopped according to a simple rule that, although subopti- 

mal, is capable of producing a low-biased estimate for the op- 

tion price that has improved convergence properties, as discussed 

in Zanger (2017) . Other authors that used methods for generat- 

ing a new set of independent random paths corresponding to 

the underlying process at each exercise time increment, indepen- 

dent of all the other sets of paths generated at all other time- 

steps, were Egloff, Kohler, and Todorovic (2007) ; Glasserman and 

Yu (2004) and Zanger (2013) . A survey of regression-based Monte 

Carlo methods for pricing American options can be found in Kohler 

(2010) and an excellent discussion of the convergence of various 

algorithms proposed for pricing American options is contained in 

Zanger (2013) . 

The calibration and parameter estimation processes can be 

sometimes impossible to separate and model misspecification may 

be difficult to disentangle given the information available in the 

options market, as pointed out by Jarrow and Kwok (2015) . Even 

when the data generating process is fully known, Monte Carlo pric- 

ing methods coupled with least-squares algorithms may be subject 

to inefficient parameter estimation. This seems to be the case in 

the literature employing LSMC, as we highlight here, and this phe- 

nomenon goes beyond the geometric Brownian motion standard 

assumption widely utilized when pricing American options. 

In this paper, we propose an improved pricing method which 

we refer to as the weighted least squares Monte Carlo (wLSMC) 

for American put option pricing. The wLSMC, similar in structure 

to the LSMC, employs the weighted least squares regression (WLS) 

method instead of the OLS method. We proceed by proving that 

the homoscedasticity of the errors, one of the assumptions under- 

pinning the OLS method, does not hold for the regressions in the 

LSMC. Consequently, the errors of the regressions of LSMC are het- 

eroscedastic, a condition which makes the OLS estimators not the 

best linear unbiased estimators (BLUE). We show that in LSMC, the 

OLS estimators tend to exhibit large pricing bias because they are 

more prone to overfitting the continuation value curve. Our analy- 

sis extends to the multi-asset American option pricing case, where 

similar results are valid. Here we also emphasize the importance of 

an improved estimation and we provide numerical evidence that 

correcting for heteroscedasticity in our proposed wLSMC method 

also improves the option price estimators. 

The outline of this paper is as follows. In Section 2 we re- 

view the American option pricing problem and the LSMC method 

in Longstaff and Schwartz (2001) . Section 3 provides substantial 

evidence on the existence of heteroscedasticity in each regression 

step of the LSMC method. After introducing the wLSMC method in 

Section 4 , we compare the pricing performances of the LSMC, ICLS 

and wLSMC methods under several price dynamics and show how 

the wLSMC reduces significantly the upward pricing bias of LSMC 

and ICLS. Section 5 expands the results in the previous sections 

to multi-asset payoffs. Section 6 highlights the application of our 

method for stochastic volatility models. A detailed numerical and 

empirical analysis based of the performance of the new method 

is provided in the Online Appendix. Section 7 concludes our 

paper. 

2. American options and the LSMC method 

Consider the filtered probability space 
(
�, F , (F t ) t≥0 , Q 

)
associ- 

ated with a financial market consisting of three assets: a bank ac- 

count d M t = rM t d t, where the risk-free interest rate r is assumed 

constant over time, a risky asset with the dynamics { S t } t ≥ 0 given 

under the risk-neutral measure Q as S t = S 0 e 
s t , where S 0 > 0 and 

{ s t } t ≥ 0 is a Markovian process with s 0 = 0 , and an American put 

option written on the risky asset (usually referred to as the un- 

derlying asset) with strike price K and maturity date T . The pric- 

ing problem for the American put option can be formulated as the 

problem to find the optimal expected discounted payoff given by 

sup τ∈ � E 0 [ h ( S τ ) | S 0 ] , where h ( S t ) = e −rt max { 0 , K − S t } is the pay- 

off in time-0 dollars to the option holder from exercise at time t 

and � is the class of admissible stopping times in (0, T ]. The nu- 

merical applications we carry out in this paper are for the four dif- 

ferent dynamics outlined in the Online Appendix: geometric Brow- 

nian motion, exponential Ornstein–Uhlenbeck process, log-normal 

jump-diffusion process and double exponential jump diffusion pro- 

cess. In addition, we also investigate two stochastic volatility mod- 

els. 

Numerical methods usually restrict the pricing of American op- 

tions to contracts that can be exercised only at a fixed set of ex- 

ercise opportunities t 1 < t 2 < · · · < t m 

= T and t 0 = 0 , the time of 

evaluation, is not usually part of this set. Without loss of gen- 

erality, we can assume that �t i 
= t i +1 − t i = T /m = �t , for any 

i = 0 , . . . , m − 1 . Henceforth, to simplify the notation under the 

discrete-time settings, we denote the underlying asset price at the 

i th exercise opportunity (the one at time t i ), simply as S i so the 

logarithmic return over the period (t i , t i +1 ) will be s i +1 − s i ; the 

payoff function in time-0 dollars for exercise at time t i when cur- 

rent state is S i = X as 

h i ( X ) = r 0 ,i max { 0 , K − X } (1) 

where r 0 ,i = e −r i �t and V i (X ) is the value in time-0 dollars of the 

option at time t i given S i = X , which is calculated with the dy- 

namic programming: 2 {
V m 

( X ) = h m 

( X ) (2) 

V i ( X ) = max { h i ( X ) , C i ( X ) } , i = 0 , . . . , m − 1 (3) 

where 

C i ( X ) = E i [ V i +1 ( S i +1 ) | S i = X ] (4) 

is the continuation value of the American put option measured in 

time-0 dollars conditioned on the current state X and E i [ ·] is the 

expectation operator under the risk-neutral measure Q . One is ul- 

timately interested in V 0 ( S 0 ). Furthermore, let us define S f i as the 

underling asset price such that h i 
(
S f i 

)
= C i 

(
S f i 

)
which is commonly 

referred to as the optimal exercise price (OEP). By employing the 

optimal exercise price, 3 an equivalent formulation of problem (2) 

and (3) for American put options is ⎧ ⎨ 

⎩ 

V m 

( X ) = h m 

( X ) (5) 

V i ( X ) = 

{
h i ( X ) if X ≤ S f i 
C i ( X ) if X > S f i 

, i = 0 , . . . , m − 1 . (6) 

2 Note that time t 0 is excluded from the set of exercise opportunities by choosing 

h 0 ( S 0 ) = 0 . 
3 Chockalingam and Muthuraman (2015) introduced the approximate moving 

boundaries method which iteratively finds an approximation of the OEP while 

Chockalingam and Feng (2015) extended Ibanez and Paraskevopoulos (2011) and 

investigated the cost of using suboptimal OEP. For long-term American options 

Fabozzi, Paletta, Stanescu, and Tunaru (2016) designed a construction method for 

the OEP based on an approximation of the optimal exercise price near the begin- 

ning of the contract combined with existing quasi-analytical pricing approaches for 

the remaining part. 
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