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a b s t r a c t 

Linear consecutively connected systems (LCCSs) are systems containing a linear sequence of ordered 

nodes. Connection elements (CE) characterized by diverse connection ranges, time-to-failure and time- 

to-repair distributions are allocated to different nodes to provide the system connectivity, i.e., a connec- 

tion between the source and sink nodes of the LCCS. Examples of LCCSs abound in practical applications 

such as flow transmission systems and radio communication systems. Considerable research effort s have 

been expended in modeling and optimizing LCCSs. However, most of the existing works have assumed 

that CEs either are non-repairable or undergo a restrictive minimal repair policy with constant repair 

time. This paper makes new technical contributions by modeling and optimizing LCCSs with CEs under 

corrective maintenance with random repair time and different repair policies (minimal, perfect, and im- 

perfect). The characteristics of CEs can depend on their location because the distance between adjacent 

nodes and conditions of CE operation and maintenance at different nodes can be different, which further 

complicates the problem. We first propose a discrete numerical algorithm to evaluate the instantaneous 

availability of each CE. A universal generating function based method is then implemented for assess- 

ing instantaneous and expected system connectivity for a specific CE allocation. As the CE allocation can 

have significant impacts on the system connectivity, we further define and solve the optimal CE alloca- 

tion problem, whose objective is to find the CE allocation among LCCS nodes maximizing the expected 

system connectivity over a given mission time. Effects of different parameters including repair efficiency, 

mission time and repair time are investigated. As illustrated through examples, optimization results can 

facilitate optimal decisions on robust design and effective operation and maintenance managements of 

LCCSs. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

In many industrial systems (e.g., flow transmission, radio com- 

munication, sensor monitoring, satellite communication), a set of 

nodes is deployed in a linearly ordered manner with connection 

elements (CEs) being allocated to some of the nodes to accomplish 

a specific function or mission task. These systems are referred to as 

linear consecutively connected systems (LCCSs) ( Levitin, 2005; Zuo 

& Liang, 1994 ). The purpose of the CE in LCCSs is to provide con- 

nectivity between its hosting node and a certain number of subse- 

quent nodes along the sequence specified by its connection range. 

The overall functionality of an LCCS is to provide a connection be- 

tween its source (the first) node and destination (the last) node. 

∗ Corresponding author at: Electrical and Computer Engineering Department, Uni- 

versity of Massachusetts, Dartmouth, MA 02747, USA. 

E-mail addresses: lxing@umassd.edu (L. Xing), levitin@iec.co.il (G. Levitin). 

The model of LCCSs was first introduced in ( Hwang & Yao, 

1989 ) as a generalized model of consecutive- k -out-of- n : F sys- 

tems ( Chang & Hwang, 2003; Eryılmaz, 2013; Eryilmaz & Tutuncu, 

2009 ). Due to its abundant applications in various industries, con- 

siderable research efforts have been dedicated to the reliability 

analysis of LCCS for both binary-state and multi-state cases ( Hwang 

& Yao, 1989; Levitin, 2001; Levitin, Xing, & Dai, 2015; Zuo & Liang, 

1994 ). In the case of heterogeneous CEs with non-identical char- 

acteristics (e.g., time-to-failure distribution, repair time distribu- 

tion, connection range), different CE allocations can lead to differ- 

ent LCCS performance ( Levitin, 2003a; Malinowski & Preuss, 1996 ). 

Thus the optimization problem of CE allocation arises. Many stud- 

ies actually showed that the performance of an LCCS can be signif- 

icantly improved through the optimal CE allocation to the system 

nodes ( Levitin, 2003b; Peng, Xie, Ng, & Levitin, 2012 ). Recently, the 

optimal CE allocation problem has been solved for LCCSs subject 

to phased-mission requirements, which involve distinct connection 
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tasks between different source and destination nodes performed in 

multiple mission phases ( Levitin, Xing, & Dai, 2013 ). During these 

phases, the system elements may be subject to diverse environ- 

ment conditions and stress levels, causing dynamics in their failure 

behaviors ( Feyzio ̆glu, Altınel, & Özekici, 2008 ). In ( Levitin, Xing, & 

Yu, 2014 ), effects of common-cause failures were further incorpo- 

rated into the modeling and optimization of phased-mission LCCSs, 

where multiple CEs can fail due to a shared root cause ( Hajeeh, 

2011 ). Additional recent developments in LCCSs have been made 

to extend the model by allowing different types of gaps (discon- 

nected nodes) in the system functionality. For example, the LCCS 

in ( Levitin, Xing, & Dai, 2015b; Yu, Yang, & Zhao, 2015 ) can tolerate 

a limited number of single-node gaps; the LCCS in ( Xiang, Levitin, 

& Dai, 2012 ) can tolerate a certain size of gap window (i.e., con- 

secutive gaps); the LCCS in ( Levitin, Xing, Ben-Haim, & Dai, 2015a; 

Yu, Yang, Peng, & Zhao, 2016 ) allows combined constraints of total 

number of single-node gaps and size of consecutive gaps. 

To the best of our knowledge, the existing works on LCCSs 

have mostly assumed non-repairable CEs for the system modeling 

and optimization with exception that CEs undergoing the minimal 

repair policy with constant repair time were addressed in ( Peng 

et al., 2012 ). In practice, the repair time can be random due to 

factors such as availability and distance of manpower and repair 

facilities, variations of ambient conditions and readiness level of 

standby equipment. Moreover, the minimal repair policy where a 

failed CE is restored to an “as bad as old” condition is restrictive. 

A more general repair model covering different degrees of repair 

efficiency is desirable. Particularly, there exist three different de- 

grees respectively corresponding to the minimal repair, perfect re- 

pair, and imperfect repair policies ( Kijima, 1989; Lindqvist, 2006; 

Yañez, Joglar, & Modarres, 2002 ). Under the minimal repair pol- 

icy adopted in ( Peng et al., 2012 ), the effective age of a repaired 

element is the same as that right before the repair action. Under 

the perfect repair policy, the effective age of a repaired element is 

simply reduced to 0. In other words, the failed element after the 

repair can be restored to an “as good as new” condition. Under the 

imperfect repair policy, the effective age of a repaired element is 

reduced by a certain amount depending on the type or efficiency 

of the repair. At this case, the failed element is restored to some 

condition between the minimal and perfect repair policies. 

In this paper, we make new contributions by considering LCCSs 

with heterogeneous repairable CEs having random repair time and 

the general repair policy covering the minimal, perfect, and im- 

perfect repairs. Following definitions of the generic LCCS model, 

system performance indices and problems addressed ( Section 2 ), 

a discrete numerical algorithm is first proposed to estimate the in- 

stantaneous availability of each repairable CE ( Section 3 ). A univer- 

sal generating function (UGF) based method is then suggested for 

evaluating the defined system performance indices (instantaneous 

and expected system connectivity) for a particular CE allocation 

( Section 4 ). The optimal CE allocation problem is further solved, 

which aims to find the CE allocation maximizing the expected LCCS 

connectivity over a given mission time ( Section 5 ). Applications of 

the proposed methodology to effective operation and maintenance 

managements of LCCSs are also demonstrated through examples 

( Section 6 ). 

2. LCCS model and problem description 

There are I + 1 consecutive locations (nodes) in the LCCS consid- 

ered with the first node being the source, the last being the sink 

node. K connecting elements (CEs) are available and should be al- 

located in K out of I non-sink nodes (any nodes except the last 

node) to provide connection between the source and sink nodes. 

The CEs are characterized by specific connection range, time-to- 

failure and time-to-repair distributions. As the distance between 

Acronyms 

cdf cumulative distribution function 

CE connecting element 

CEAP CE allocation problem 

GA genetic algorithm 

ILC instantaneous LCCS connectivity 

LCCS linear consecutively connected system 

pdf probability density function 

pmf probability mass function 

UGF universal generating function (u-function) 

Nomenclature 

I number of nodes that can contain CEs in the 

considered LCCS system 

K total number of CEs 

τ time horizon or mission time 

L n ( t ) index of the most remote node that can be 

reached by operating CEs located at nodes 

1,…, n at time t 

s CE allocation function that maps index of node 

i to index s ( i ) of CE located at this node 

a ( t,s ) instantaneous LCCS connectivity 

A ( τ ,s ) expected LCCS connectivity over system mis- 

sion time τ
s ( i ) index of CE located at node i 

ζ s ( i ) ( t ) hazard rate of CE s ( i ) 

π s ( i ) repair efficiency coefficient of CE s ( i ) ranging 

from 0 to 1 

G i ( t ) random connection range of CE located at node 

i 

J i,k maximal number of failures of CE k located at 

node i during the time horizon 

p i,k ( t ) instantaneous availability of CE k located at 

node i 

〈 T j , X j 〉 event when the j th failure of a CE occurs at 

time T j and the CE spends time X j in an op- 

eration mode before the failure 

Q j ( t , x ) function representing joint distribution of ran- 

dom variables T j and X j for a CE 

f i,k ( t ), F i,k ( t ) pdf , cdf of lifetime for CE k located at node i 

ψ i,k ( t ), � i,k ( t ) pdf, cdf of repair time for CE k located at node 

i 

g i,k connection range of operating CE k located at 

node i 

ηi,k , β i,k scale, shape parameters of Weibull time-to- 

failure distribution for CE k located at node i 

D i,k random repair time for CE k located at node i 

d min 
i,k 

, d max 
i,k 

minimal, maximal possible realizations of D i,k 

μi , k , σ i,k mean, standard deviation for truncated normal 

distribution of D i,k 

adjacent nodes and conditions of CE operation and maintenance 

at different nodes can differ, the characteristics of the CEs depend 

on their location. For example, the distance of nodes hosting CEs 

from service centers affects the repair time distributions of the CEs. 

The repair time for CE k can also depend on availability and effi- 

ciency of the repair manpower and equipment. Thus it is assumed 

that for any CE k located at node i , the repair time is randomly 

distributed in the interval [ d min 
i,k 

, d max 
i,k 

]. The cdf � i,k ( t ) of the ran- 

dom repair time is known and such that � i,k ( t ) = 0 for t < d min 
i,k 

and 

� i,k ( t ) = 1 for t > d max 
i,k 

. Each CE has two states, operation or failure. 

The connection range of CE k located at node i , when operating, is 

represented by g i,k . 
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