
Applied Soft Computing 13 (2013) 2504–2514

Contents lists available at SciVerse ScienceDirect

Applied Soft Computing

j ourna l ho me p age: www.elsev ier .com/ l ocate /asoc

Course timetabling using evolutionary operators

Danial Qauroonia,∗, Mohammad-R. Akbarzadeh-Tb

a Department of Computer Science, Amirkabir University of Technology, Tehran, Iran
b Center of Excellence on Soft Computing and Intelligent Information Processing, Ferdowsi University, Mashhad, Iran

a r t i c l e i n f o

Article history:
Received 13 September 2010
Received in revised form 21 October 2012
Accepted 24 November 2012
Available online 26 December 2012

Keywords:
Combinatorial optimization
Scheduling and timetabling
Evolutionary operators
Memetic algorithms
Grouping genetic algorithms

a b s t r a c t

Timetabling is the problem of scheduling a set of events while satisfying various constraints. In this
paper, we develop and study the performance of an evolutionary algorithm, designed to solve a specific
variant of the timetabling problem. Our aim here is twofold: to develop a competitive algorithm, but
more importantly, to investigate the applicability of evolutionary operators to timetabling. To this end,
the introduced algorithm is tested using a benchmark set. Comparison with other algorithms shows that
it achieves better results in some, but not all instances, signifying strong and weak points. To further the
study, more comprehensive tests are performed in connection with another evolutionary algorithm that
uses strictly group-based operators. Our analysis of the empirical results leads us to question single-level
selection, proposing, in its place, a multi-level alternative.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

The essence of timetabling is scheduling a set of events, where
scheduling typically consists of allotting rooms and time slots to
events, subject to certain specified constraints. Varying sets of con-
straints constitute the gamut of timetabling subclasses that are
designed to address different theoretical and real-world appli-
cations, ranging from terminal scheduling to nurse rostering. A
general survey of these various subclasses is available in [1].
One such subclass, educational timetabling, deals with scheduling
problems in schools and universities, with constraints pertain-
ing to teachers, lecture hours, facilities, program conflicts, room
capacities, etc. Educational timetabling itself consists of three
major variants, namely the university course timetabling problem
(UCTP), the exam timetabling problem (ETP), and the high school
timetabling problem (HTP). These have constraint-related differ-
ences. For instance while, in the ETP, events can take place in the
same room and time slot as long as they satisfy all other constraints,
in the UCTP, only one event can occupy a certain room at a specified
time slot. Also, while the length of the UCTP scheduling period (and
hence the number of time slots) is constant, since no more than a
certain number of time slots can fit in a week, ETP might be able to
benefit from some level of flexibility in this area. In this paper we
focus on the UCTP, but in light of the similarity in problem structure
and constraint sets, the other variants may be subject to some of
the issues discussed here with little loss of generality.

∗ Corresponding author.
E-mail address: dani.qaurooni@aut.ac.ir (D. Qaurooni).

The constraints of the UCTP are divided into two main cate-
gories of hard and soft, denoting issues of feasibility and preference,
respectively. Any violation of a hard constraint results in an
infeasible timetable. Most frequent among these violations is when
two events that share participants are scheduled to be held at the
same time, resulting in a so-called event clash. Clearly, a timetable
containing such clashes is unacceptable. Soft constraints, on the
other hand, are more like considerations that, when taken into
account, can yield timetables that are more accommodating for the
institution, the participants, or both. Thus we might formulate a
typical soft constraint to discourage the scheduling of more than
two classes in a row for any student.

The NP-Completeness of the timetabling problem, has been
explicitly established by Even et al. in [2], making the task of tack-
ling the problem particularly attractive and challenging in equal
measures for a host of algorithmic approaches. General surveys of
the performance of algorithms can be found in [3–5]. In this paper,
we focus on course timetabling problems whose solutions conform
to a general evolutionary framework.

Metaheuristics have been widely utilized for solving timetabling
problems. In the framework of swarm intelligence, ant colony opti-
mization algorithms have been proposed, such as [6,7] which use
ants to construct complete assignment of events to time slots
using heuristics and pheromone information. Timetables are then
improved using a local-search procedure, and the pheromone
matrix is updated accordingly for the next iteration. Specifically,
Socha et al. compare and analyze two different ant systems in
[6], and go on to compare the MMAS (the better-performing
ant system) with other algorithms, concluding that on the large
instances, MMAS outperforms competitors. Among the more novel

1568-4946/$ – see front matter © 2012 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.asoc.2012.11.044

dx.doi.org/10.1016/j.asoc.2012.11.044
http://www.sciencedirect.com/science/journal/15684946
www.elsevier.com/locate/asoc
mailto:dani.qaurooni@aut.ac.ir
dx.doi.org/10.1016/j.asoc.2012.11.044

D. Qaurooni, M.-R. Akbarzadeh-T / Applied Soft Computing 13 (2013) 2504–2514 2505

approaches, honey-bee mating optimization has also been applied
to both exam and course timetabling in [8]. The authors test their
algorithm against Carter and Socha benchmark sets and reportedly
achieve “competitive if not better” results. The popular simu-
lated annealing (SA) heuristic has been implemented in [9–11]
among others. Specifically, [10] uses a two-phased SA algorithm
with a few heuristics and a new neighborhood structure that
swaps between pairs of time slots, instead of two assignments. The
authors report that, when tested against two standard benchmark
sets, the new neighborhood heuristic improves the performance
of SA. Tabu search is also applied in [12,13]. In [13], an adaptive
tabu search is used to integrate an original double Kempe chains
neighborhood structure, a penalty-guided perturbation operator
and an adaptive search mechanism, to achieve more efficient
results.

More specifically, evolutionary algorithms (EAs) have been
applied to timetabling problems with varying degrees of success
in the works of [14–19] among others. For example, [14] is among
the first to remedy the poor performance of a genetic algorithm,
compared with other conventional methods, by way of a group-
ing encoding. Generally, however, EAs employ other techniques to
make up for their potential failure in dealing with local optima. For
instance, [17] takes advantage of domain-specific heuristics in an
otherwise evolutionary structure to boost performance. Working
on real-world, rather than artificial, problems, Beligiannis et al. use
an evolutionary algorithm to solve timetabling problems in Greek
high schools in [18].

As a subclass of EAs, memetic algorithms have been used to solve
timetabling in [19–24] among others. As one of the earliest appli-
cations, in [20], Burke et al. use one of two mutation operators,
namely “light” and “heavy”, to reschedule a random selection of
events or disrupt whole time slots of events, respectively. The evo-
lutionary process incorporates hill climbing too. Alkan and Ozcan
have used a number of different one-point and uniform crossover
operations, a weighted fitness function, and again a hill climbing
procedure to reduce violations in [21]. A recent successful applica-
tion of a memetic algorithm to laboratory timetabling is [23] where
student preferences are also taken into account.

While standard benchmark sets for timetabling exist [25–27],
it has been argued in [5] reasonably that “there is confusion in
the field” in this regard, to the point that performing meaningful
comparisons or reproducibility might be compromised. In part to
overcome such obstacles, two international timetabling competi-
tions have been held recently. The latter consisted of examination
and course timetabling problem sets. McCollum et al. provide an
overview of this event in [28]. Information on the winning algo-
rithms can also be found in [29].

In general though, the standard benchmark packages are usually
designed with hard and soft constraints in mind, hence disregard-
ing soft constraints to focus on feasibility is hardly a challenge. In
fact, many mainly focus on soft constraints, to the point that feasible
solutions are found so fast as to render any comparison and analysis
meaningless. In such a situation, the benchmarking instances pro-
vided in [30] address the issue of how different algorithms would
fare when the focus is shifted to feasibility. This is achieved through
a careful choice of a deliberate subset of a larger set of problem
instances that have proven to be particularly difficult, but have at
least one feasible solution. The first substantial use of this package
was in relation to the work of [19], which implemented two algo-
rithms. One of these mainly used grouping genetic operators, while
the other implemented a local search. Both algorithms were aug-
mented by local search. The average results of these two algorithms
were later improved in the context of a simulated annealing algo-
rithm [31]. In this paper, we will restrict our attention to these “hard
instances”, along with a discussion of the performance of the three
algorithms that have made use of it.

The paper is organized in the following manner: A detailed prob-
lem description is given in the next section, followed by the outline
of our memetic algorithm in Section 3, where we go over details
about general algorithm structure and operator design. Section 4
includes a more focused discussion of the fitness function. In Sec-
tion 5, experimental parameters are provided and the proposed
algorithm is put to test. Comparisons with three other algorithms
follow, demonstrating the superior performance of our memetic
algorithm in two of the three instance sets. The focus is then
narrowed down to evolutionary algorithms, with an analysis of
operator design and development of new measures and further
tests. We close by making conclusions and suggesting possible
directions for future research in Section 8.

2. Problem description

Stated formally, the particular timetabling problem we study
here, initially formulated for the First Timetabling Competition
[32], has four parameters: T, a finite set of times; R, a finite set of
rooms; E, a finite set of events; and C, a finite set of constraints, and
concerns assigning times and rooms to the events so as to satisfy the
required constraints. These constraints are divided into two cate-
gories of hard and soft. Generally speaking, hard constraints denote
mandatory requirements that, when satisfied, produce “working”
timetables. Soft constraints, on the other hand, cater to the prefer-
ences of the teachers, students, etc. Although an optimal solution
attends to both hard and soft constraints, our algorithm ignores soft
constraints and focuses on hard constraints for reasons that will be
explained in Section 5.

In mathematical terms, a binary-valued function h : S → 0, 1 can
be associated with each hard constraint. For each solution s ∈ S, the
function is defined by

h(s) =
{

1 if s does not satisfy the constraint

0 otherwise

Let S be the set of all solutions to a given timetabling prob-
lem. A feasible solution is any solution s ∈ S that satisfies all hard
constraints. Thus, the objective function might be formulated as

F(S) =
n∑

i=1

hi(S) (1)

where hard constraints are given by h1, h2, . . ., hn. Our particular
formulation includes the following hard constraints:

• H1: no student is permitted to attend more than one event at any
one time;

• H2: only one event is scheduled for any room and any time slot;
• H3: all of the features required by the event should be satisfied

by the room, which has an adequate capacity.

Aside from general problem description, it might be use-
ful to discuss a problem-solving perspective that will influence
our solution-building later on, namely the idea of interpreting
timetabling as a grouping problem. In [33], Falkenauer defines
grouping problems as those where the task is to partition a set
of objects U into a collection of mutually disjoint subsets ui of U,
where⋃

ui = U and ui ∩ uj = 0, i /= j (2)

according to a set of problem-specific constraints that define allow-
able groupings. Familiar cases where this criterion holds include bin
packing, graph coloring and timetabling. A corresponding group-
ing genetic algorithm (GGA), devised by Falkenauer is based on the
notion that, while traditional genetic operators are well-suited for

Download English Version:

https://daneshyari.com/en/article/495943

Download Persian Version:

https://daneshyari.com/article/495943

Daneshyari.com

https://daneshyari.com/en/article/495943
https://daneshyari.com/article/495943
https://daneshyari.com

