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a b s t r a c t 

We present a new theory for the dynamic evolution of losses incurred in combat, which is verified using 

available published data from WW1, WW2 and later conflicts. 

This new dynamic theory updates and revises the original Lanchester-type proportionality assump- 

tions for exchange rates, and unifies military operational and strategic thinking in warfare with the evo- 

lution of human learning as observed in all modern technological systems. The theory is tested using dy- 

namic data from the vast battles of Kursk, Ardennes and the North Atlantic. The loss and exchange rates 

closely follow the trends for event rates given by the previously established Universal Learning Curve, 

while indicating differences between the initial attacker and defender. For conflicts from 1865 to 1991, a 

new correlation has emerged for overall losses as a function of size of force deployed. Lessons learned 

after WW2 of using the strategy of standoff engagement dramatically reduced losses. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

We have previously demonstrated that the concept of human 

learning applies to everyday and rare accident and event data, and 

have extended these ideas to human, software and hardware relia- 

bility ( Duffey & Ha, 2010; Fiondella & Duffey, 2015 ). Most recently, 

for World War 2 (WW2) the same concepts have been success- 

fully applied to U-boat losses and countermeasure effectiveness in 

the North Atlantic ( Duffey & Gallehawk, 2016 ). This work lead to 

the present re-examination of the general basis behind previous 

models developed in the field of operational research for the pre- 

diction and reduction of losses in warfare ( Blackett, 1943; Morse 

& Kimball, 1958; Johnson, 1990; Beer, 1994; Hausken & Moxnes, 

20 05; Lucas and Dinges, 20 04 ). Specifically, we include the effects 

of varying tactics, strategy and countermeasures during conflicts 

and battles by both sides. 

We present a new theory for the dynamic evolution of losses 

incurred in combat, which is verified using available published 

data from World Wars 1 and 2 (WW1, WW2) and later conflicts. 

The new theory generalizes conflict or combat theory by being 

based on the concept that the loss rates vary systematically with 

increasing experience and/or risk exposure during battle itself. The 

randomness of individual and collective combats on the battle- 

field emerges as systematic patterns as to which side is winning 

or losing. The trends and fluctuations depend on the learning and 

responses on both sides, which are a direct result of both com- 

mand decision-making and individual human behavior where the 
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observed outcomes are the most likely result of the innumerable 

battlefield interactions (troops vs. troops, tank vs. tank, tank vs. 

troops, individual skirmishes, massed assaults etc.). The result is 

statistically consistent with being the most likely outcome dis- 

tribution ( Duffey & Saull, 2008 ), and provides a new exponen- 

tial form for the dynamic loss rate. This new dynamic theory up- 

dates and revises the original Lanchester-type proportionality as- 

sumptions for exchange rates, and unifies military operational and 

strategic thinking in warfare with the evolution of human learning 

as observed in all modern technological systems ( Duffey & Saull, 

2008 ). 

The analysis of how to achieve superiority in warfare and com- 

bat is a massive field of study all to itself, and cannot be repeated 

here. Deaths and casualties in conflicts and wars are the subject 

of extensive study, especially to quantify the numerical advantage 

over the enemy as each seeks to minimize their own relative losses 

and counter the opponent. After all, if the losses are equal on both 

sides, we have mutually assured destruction; and if not equal then 

one side eventually wins. The useful conventional measure of ad- 

vantage is the average exchange or attrition rate over the conflict, 

being the ratio of the loss rate incurred by one opponent force 

(conventionally called “Blue”) to the loss rate inflicted on the other 

force (conventionally called “Red”). 

These exchange or “attrition” ratios, E, have been embodied 

in the well-known Lanchester equations developed after WW1 

and used in WW2, to describe overall losses for air, land and 

sea battles ( Morse & Kimball, 1958; Johnson, 1990; Fricker, 1998; 

Hausken & Moxnes, 2002; Lucas & Dinges, 2004; Lucas & Turkes, 

20 04; Tang, 20 06 ), and even applied to studies of insect colonies 

and regime change. The loss rates on each side are assumed to be 
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proportional to the forces and firepower involved, and in the more 

general correlations there are some five empirical “constants” for 

any individual battle ( Fricker, 1998 ). Previous results of using such 

fits to overall and daily battle data have been well summarized 

elsewhere ( Dinges, 2001; Lucas & Dinges, 2004 ), who found them 

to be contradictory and anyway not characterized by constant 

correlation coefficients but are battle or conflict specific. Lucas and 

Dinges (2004 , p 28) state that “Consequently, despite many efforts, 

there have been few clear results regarding the validity of Lanchester’s 

equations as a model of aggregate attrition.”

This extension to a developing or dynamic conflict situation has 

been examined using the detailed deployment and casualty data 

available for the Kursk and Ardennes battles during WW2. For the 

Ardennes battle it has been stated “Lanchester’s basic models do not 

hold when fit to data from an actual battle ” ( Fricker, 1998 , p. 19). 

Specifically, it was shown for the Kursk battle that the dynamic 

variation during the battle was important ( Lucas & Dinges, 2004 , p. 

17) as follows: “Much more of the variation in casualties during the 

Battle of Kursk is explained by the status of the forces considered and 

the phases of the battle than by the Lanchester variant used. Specifi- 

cally, we obtain substantially better fits when we use only the forces 

that are actively fighting. An additional improvement in fit is gained 

by breaking the battle into its natural phases. Finally, when comparing 

fits among the basic laws, we observe that Lanchester’s linear law fits 

these aggregate data better than the logarithmic law does and much 

better than the square law does.”

In addition, Lucas and Turkes (2004 , p. 116) suggest: “The fail- 

ure to find any good-fitting Lanchester model suggests that it may 

be beneficial to look for new approaches to model highly aggregated 

attrition.” This statement alone is sufficient motivation and justifi- 

cation for the present study. 

Other effort s to generalize the Lanchester relations include 

time-dependent reinforcement, withdrawal and combat “effective- 

ness coefficients’” ( Protopopescu, Santoro, Dockery, Cox, & Barnes, 

1987 ), and including stochastic exchange or firepower fluctuations 

via assumed normal, binomial and Poisson distributions ( Hausken 

& Moxnes, 20 0 0; Hausken & Moxnes, 2002 ). The method impor- 

tantly allows for time-dependent feedback between the two sides, 

as one adapts and responds to the other. For the Ardennes bat- 

tle, Hausken and Moxnes (2002) empirically varied the coefficients 

for each assumed “phase” (days) of the battle and encompassed 

some 38 to 68% of the data fluctuations when adopting firepower 

weighted combat effectiveness multipliers for tanks, armored per- 

sonnel carriers (APCs), artillery, troops etc. This empirical statistical 

fitting appears to be a trivial result in that data variations can be 

covered by uncertainty and probability distributions; and without 

general guidance on what coefficient variations to use for different 

situations, Hausken and Moxnes (2002) suggest compiling data for 

differing war situations and types. This is what is also undertaken 

in the present work, and we also show that firepower weighting is 

possibly an unnecessary complication. 

Which exchange or attrition relationship or “law” is right or 

correct remains an important question, and whether and how the 

exchange rate varies during combat. We develop this key idea of 

Lucas and Dinges (2004 ) that the attrition or exchange rate varies 

during the combat development. Warfare and combat is intrinsi- 

cally dynamic, changing tactics and deployment as one side strives 

to take advantage or attack, and the other responds or defends, 

and vice versa. Battles and conflicts involve humans , who manage 

and control both their weapons and their own actions: an army or 

force is simply a collection of humans, responding and adapting to 

the developing situation. 

We adopt an entirely new approach to warfare based on the 

Learning Hypothesis ( Duffey & Saull, 2008 ) as to how humans be- 

have, correct mistakes and make decisions, which is in accord with 

masses of data for human learning ( Anderson, 1990; Fiondella & 

Duffey, 2015 ) and with theories in cognitive psychology, like Ohls- 

son’s Theory of Error Correction ( Ohlsson, 1996 ). The commonly 

used Lanchester equations are then shown to be special limiting 

cases of this more general result. To prove generality, the theory 

is validated against data for the battles of Kursk, Ardennes and 

the North Atlantic in WW2, and important measures are derived 

for the risk exposure, learning opportunity and strategic counter- 

measure response. In addition to establishing new general loss rate 

equations, we also provide new correlations for the casualty data 

from the US Civil War, WW1, WW2, and for US forces for the Ko- 

rean, Vietnam and Gulf Wars. 

To our knowledge this is the first time that the separate fields 

of cognitive psychology, physics, engineering reliability, human 

performance, safety analysis, risk management, and military strat- 

egy have been quantitatively combined. It underlines the impor- 

tance of adaptation and flexibility in control and command during 

combat. 

2. The dynamic theory of combat: revising the Lanchester 

Equations 

We examine what learning models would suggest when com- 

batants or opponents dynamically change their tactics and strategy 

as the battle or war proceeds. Warfare is then a dynamic learning 

situation, as occurs in real combat. Resulting in second order dif- 

ferential relationships, the Lanchester first order equations are then 

shown to be special cases of the more general result. We can then 

easily show what the average results will be in terms of compara- 

tive loss totals and rates. Some additional mathematical details are 

given in the Appendix. 

In combat or conflicts the idea is to inflict more casualties on 

the enemy or opposing force. The obvious thought is that the rel- 

ative losses must be related to the number of casualties and the 

type of combat or firepower. This idea was captured by the Lanch- 

ester equations, where an “exchange rate”, E, is defined as the ratio 

of the rate of losses on the Blue and Red sides for a given battle 

or risk exposure measure, T. The Blue force strength and losses are 

N and n, respectively, and M and m for the Red side. The resulting 

first order differential equation is 

E = I n / I m 

= 

dn 

dT 
/ 

dm 

dT 
= 

dn 

dm 

(1) 

Here the symbol T is not necessarily elapsed time, or even con- 

ventionally the number of elapsed battle days, but some relevant 

conflict, experience or risk exposure measure that we define later 

in Section 4 . The definition of Blue “winning” or “conflict advan- 

tage” is when E < 1 from counting casualties or destroyed combat 

systems. The loss rates for Blue and Red are strictly called the in- 

tensity, I n or I m, ( Fiondella & Duffey, 2015 ), which are assumed to 

be proportional in some way to the force numbers. More general 

correlations then have forms like (see e.g. Morse & Kimball,1958; 

Fricker, 1998;Plowes & Adams, 2005;Hausken & Moxnes, 2002 ), 

I n = 

dn 

dT 
= a γ ( T ) 

[
N ( T ) 

p M ( T ) 
q 
]

and 

I m 

= 

dm 

dT 
= b 1 −γ ( T ) 

[
M ( T ) 

p N ( T ) 
q 
]

(2) 

where the fitting “constants” like γ , a, b, p and q, are adjusted to 

data for each overall conflict or conventionally for each successive 

battle day or measure, T. Sometimes sophisticated fitting routines 

and sampling techniques are used, and assumptions made that the 

constants vary because of firepower, force concentration and strat- 

egy differences (e.g. Hausken & Moxnes, 2002 ). The expressions in 

Eq. (2) are first order differential equations in n and m, and the 

choice of p and q being 0 or 1 determines if the loss relation is lin- 

ear, square or logarithmic. Hence, the original Lanchester exchange 
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