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a b s t r a c t 

Stochastic kriging (SK) methodology has been known as an effective metamodeling tool for approximating 

a mean response surface implied by a stochastic simulation. In this paper we provide some theoretical 

results on the predictive performance of SK, in light of which novel integrated mean squared error-based 

sequential design strategies are proposed to apply SK for mean response surface metamodeling with a 

fixed simulation budget. Through numerical examples of different features, we show that SK with the 

proposed strategies applied holds great promise for achieving high predictive accuracy by striking a good 

balance between exploration and exploitation. 

Published by Elsevier B.V. 

1. Introduction 

Complex computer simulation models of proposed or existing 

real systems are often used to aid system design. This usually hap- 

pens when it is impractical to construct multiple prototype ver- 

sions of the real system, or other constraints such as cost or time 

prohibit experimentation with the real system. Analysts often use 

the simulation model as a surrogate to do the system design. How- 

ever, simulation models themselves can be quite complicated, and 

the decision to build and use a simulation model of a large-scale, 

complex system represents a nontrivial investment of time and 

money. Furthermore, in applications where intense simulation is 

necessary to evaluate even one scenario or where it is required 

to learn the impact of many “what if” scenarios, simulation can- 

not deliver the desired answer in a timely manner. As a result, 

a metamodel is often built on outputs from simulations run at 

some selected design points to “map” the performance response 

surface as a function of the controllable decision variables, or un- 

controllable environmental variables, to approximate the behavior 

of the original simulation model. This metamodel can be used as 

an accurate, drop-in replacement for the simulation model as if 

the simulation can be run “on demand.” Successful applications 

have been recorded in many cases, including urban transportation 

analysis ( Osorio & Bierlaire, 2013 ), polymerization reaction process 
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study ( Ouyang, Ma, Wang, & Tu, 2017 ) and analysis of manufactur- 

ing process with switching output regimes ( Santos & Santos, 2016 ). 

The kriging methodology has been very popular in various en- 

gineering disciplines for approximating the output of determinis- 

tic computer experiments (i.e., the same output is produced if the 

simulation is run twice at the same design point); see, for instance, 

Santner, Williams, and Notz (2003) . To build a high-quality meta- 

model such as kriging with a given simulation budget to expend, a 

carefully designed simulation experiment is required. The literature 

on experimental designs for deterministic computer experiments 

abounds and various non-sequential design schemes have been 

proposed, for instance, Latin hypercube designs (LHDs) ( McKay, 

Beckman, & Conover, 1979 ), orthogonal array based LHDs ( Tang, 

1993 ), uniform designs ( Fang, Lin, Winker, & Zhang, 20 0 0 ), and 

maximum entropy designs ( Shewry & Wynn, 1987 ); see more de- 

tails from Section 5.5 of Kleijnen (2015) . More recently, Gauthier 

and Pronzato (2014 , 2016 ) investigate spectral approximations of 

the integrated mean squared error (IMSE) and the truncated-IMSE 

and obtain efficient approximations of IMSE-optimal quadrature 

designs. Compared to the aforementioned non-sequential designs 

that choose all design points up front, sequential designs can offer 

a huge advantage in that they improve budget allocation efficiency 

by learning information from previous experiment runs and allo- 

cating the remaining simulation budget more wisely. 

Sequential design strategies for global metamodeling have been 

studied in the context of deterministic computer experiments, to 

perform either prediction or optimization ( Kleijnen, 2017 ). With re- 

spect to metamodeling for prediction, the interest lies in construct- 

ing sequential designs for a metamodel to achieve high predictive 

http://dx.doi.org/10.1016/j.ejor.2017.03.042 

0377-2217/Published by Elsevier B.V. 

Please cite this article as: X. Chen, Q. Zhou, Sequential design strategies for mean response surface metamodeling via stochastic kriging 

with adaptive exploration and exploitation, European Journal of Operational Research (2017), http://dx.doi.org/10.1016/j.ejor.2017.03.042 

http://dx.doi.org/10.1016/j.ejor.2017.03.042
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
mailto:xchen6@vt.edu
mailto:zhouq@email.arizona.edu
http://dx.doi.org/10.1016/j.ejor.2017.03.042
http://dx.doi.org/10.1016/j.ejor.2017.03.042


2 X. Chen, Q. Zhou / European Journal of Operational Research 0 0 0 (2017) 1–11 

ARTICLE IN PRESS 

JID: EOR [m5G; April 4, 2017;14:44 ] 

accuracy across the entire design space. For example, Ranjan, Bing- 

ham, and Michailidis (2008) propose a sequential design method 

for estimating a contour (also called a level set of iso-surface) of 

a computer code. In reliability engineering, Bect, Ginsbourger, Li, 

Picheny, and Vazquez (2012) estimate the probability of failure 

with a sequential strategy using stepwise uncertainty reduction. 

Kleijnen and van Beers (2004) propose an application-driven se- 

quential strategy using cross-validation and jackknifing to estimate 

the variances of computer outputs for candidate design points. 

Their approach tends to add more design points to those design re- 

gions with interesting input/output behavior. As to metamodeling 

for optimization, the focus is on establishing sequential methods 

to seek the global optimum. The pioneering work that introduces 

the efficient global optimization (EGO) approach ( Jones, Schonlau, 

& Welch, 1998 ) has inspired the development of many EGO vari- 

ants for solving various types of optimization problems; the in- 

terested reader is referred to details from Section 6.2 of Kleijnen 

(2017) and Section 6.3 of Kleijnen (2015) and references therein. 

In recent years, kriging related research for stochastic simu- 

lation (or random computer experiments) has flourished, lead- 

ing to a plethora of theoretical and empirical work on a wide 

range of topics. A majority of these studies have been dedicated 

to efficiently metamodeling the mean response surface implied 

by a stochastic simulation, e.g., van Beers and Kleijnen (2008) , 

Ankenman, Nelson, and Staum (2010) , Ng and Yin (2012) and 

Mehdad and Kleijnen (2015) . There also exist research studies that 

either focus on jointly metamodeling the underlying mean and 

simulation variance response surfaces (e.g., Kersting, Plagemann, 

Pfaff, & Burgard, 2007; Boukouvalas & Cornford, 2009; Robinson, 

Birch, & Starnes, 2010; Marrel, Iooss, da Veiga, & Ribatet, 2012; 

Wang & Chen, 2016; Binois, Gramacy, & Ludkovski, 2016 ) or con- 

cern about quantile-based response surface approximation (e.g., 

Yang, Ankenman, & Nelson, 2008; Chen & Kim, 2013; Bekki, Chen, 

& Batur, 2014; Picheny, Ginsbourger, Richet, & Caplin, 2013; Chen 

& Kim, 2016 ), to better cope with heteroscedasticity present in the 

stochastic simulation outputs. 

The stochastic kriging (SK) methodology proposed by Ankenman 

et al. (2010) distinguishes itself as an effective metamodeling tool 

for approximating a mean response surface by correctly account- 

ing for both sampling uncertainty inherent in a stochastic simula- 

tion and the response-surface uncertainty. Recently, fruitful results 

have been achieved both with respect to in-depth theoretical in- 

vestigations and regarding successful applications of SK (e.g., Liu & 

Staum, 2010; Chen, Ankenman, & Nelson, 2012; 2013; Chen & Kim, 

2014; 2016 ). 

With respect to metamodeling for mean response prediction in 

the stochastic simulation setting, some in-depth work has been 

conducted regarding asymptotic properties of kriging prediction 

with nugget and the implications on non-sequential experimen- 

tal designs with a large simulation budget are provided ( Gratiet 

& Garnier, 2015 ). However, a systematic account of sequential de- 

signs with a fixed simulation budget has yet to be established, 

despite the earlier effort s by van Beers and Kleijnen (2008) , Ng 

and Yin (2012) , Ajdari and Mahlooji (2014) and Mehdad and Klei- 

jnen (2015) . In particular, very little work has been done on de- 

vising efficient experimental designs for applying the SK method- 

ology. There exist some sequential design strategies proposed by 

Chen and Zhou (2014) , nevertheless their results are preliminary 

and lack a theoretical grounding. 

In this paper we aim to provide a first step toward estab- 

lishing efficient sequential design strategies to implement SK for 

mean response prediction with a fixed simulation budget. We pro- 

vide some theoretical results on the predictive performance of SK, 

in light of which we propose novel IMSE-based sequential design 

strategies that show great promise in striking a good balance be- 

tween exploration (namely, selecting new design points to per- 

form simulations for reducing response-surface uncertainty) and 

exploitation (namely, allocating simulation budget to existing de- 

sign points for reducing sampling uncertainty). The remainder of 

this paper is organized as follows. Section 2 provides a review on 

SK. Section 3 studies some properties of SK theoretically, which 

leads to the proposed sequential design strategies for implement- 

ing SK in Section 4 . The predictive performances of SK with dif- 

ferent design strategies used are demonstrated through numerical 

examples in Section 5 . Section 6 concludes the paper. 

2. A review on stochastic kriging 

We provide a brief review on the stochastic kriging (SK) 

methodology in this subsection. SK assumes the following model 

to represent the simulation output obtained on the j th simulation 

replication at design point x ∈ X ⊂ R 

d , 

Y j (x ) = Y (x ) + ε j (x ) = f (x ) � β + M (x ) + ε j (x ) , (1) 

where Y(x ) denotes the unknown performance-measure surface of 

interest, and εj ( x ) represents the simulation noise that has mean 

zero and variance V(x ) := Var (ε j (x )) . Furthermore, f ( x ) is a p × 1 

vector of known functions of x and β is a p × 1 vector of unknown 

parameters. 

As treated in the design and analysis of deterministic com- 

puter experiments literature ( Santner et al., 2003 ), SK postulates 

that M (·) represents a second-order stationary mean-zero Gaus- 

sian random field. That is, M (x ) can be regarded as being sam- 

pled randomly from a space of mappings R 

d → R , in which func- 

tions are assumed to exhibit spatial correlation. Specifically, there 

exists a spatial correlation function R (·; θ) that measures the cor- 

relation of the values of M (x i ) and M (x � ) . This correlation is 

determined by the distance between x i and x � measured along 

each of the d dimensions, and the d × 1 parameter vector θ = 

(θ1 , θ2 , . . . , θd ) 
� controls how quickly the spatial correlation dimin- 

ishes as the two points become farther apart in each direction. 

Commonly used correlation functions include the Gaussian cor- 

relation function, Matérn correlation functions, and the exponen- 

tial correlation function (see Chapter 4 of Rasmussen & Williams, 

2006 ); we choose to use the popular Gaussian correlation func- 

tion R (x i − x � ; θ) = exp (−∑ d 
r=1 θr (x ir − x �r ) 

2 ) in this paper. Given 

a correlation function, the implied covariance function is 

Cov (M (x i ) , M (x � )) = τ 2 R (x i − x � ; θ) , (2) 

where τ 2 denotes the variance of M (x ) for all x ∈ X . We note that 

in contrast to the stochastic nature of M referred to as extrinsic un- 

certainty by Ankenman et al. (2010) , the intrinsic uncertainty repre- 

sented by ε is inherent in a stochastic simulation output; we fur- 

ther assume that M and ε are independent. 

In the stochastic simulation setting, an experimental design 

consists of design-point locations and the corresponding num- 

bers of replications to conduct simulations, e.g., D = { (x i , n i ) , i = 

1 , 2 , . . . , k } . Denote the sample average simulation response at x i 
by Ȳ (x i ) and let the vector of the sample average simulation re- 

sponses be Ȳ = 

(
Ȳ (x 1 ) , Ȳ (x 2 ) , . . . , Ȳ (x k ) 

)� 
. Following the afore- 

mentioned description, SK represents the sample average simula- 

tion response by 

Ȳ (x i ) = 

1 

n i 

n i ∑ 

j=1 

Y j (x i ) = Y(x i ) + ε̄ (x i ) , (3) 

where ε̄ (x i ) := n −1 
i 

∑ n i 
j=1 

ε j (x i ) denotes the simulation error asso- 

ciated with the performance-measure point estimate Ȳ (x i ) , i = 

1 , 2 , . . . , k . The simulation errors ε 1 (x i ) , ε 2 (x i ) , . . . are naturally in- 

dependent and identically distributed (i.i.d.) across replications in 

the stochastic simulation setting. In this paper we do not con- 

sider using common random numbers (CRN is a widely used vari- 
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