
European Journal of Operational Research 261 (2017) 1–16 

Contents lists available at ScienceDirect 

European Journal of Operational Research 

journal homepage: www.elsevier.com/locate/ejor 

Invited Review 

Mathematical optimization approaches for facility layout problems: 

The state-of-the-art and future research directions 

Miguel F. Anjos a , ∗, Manuel V. C. Vieira 

b 

a GERAD & Department of Mathematics and Industrial Engineering, Polytechnique Montreal, Montreal, QC, Canada H3C 3A7 
b Departamento de Matemática, Faculdade de Ciências e Tecnologia & CMA, Universidade Nova de Lisboa, Portugal 

a r t i c l e i n f o 

Article history: 

Received 2 February 2016 

Accepted 30 January 2017 

Available online 3 February 2017 

Keywords: 

Facilities planning and design 

Unequal-areas facility layout 

Row layout 

Mixed integer linear optimization 

Semidefinite optimization 

a b s t r a c t 

Facility layout problems are an important class of operations research problems that has been studied for 

several decades. Most variants of facility layout are NP-hard, therefore global optimal solutions are diffi- 

cult or impossible to compute in reasonable time. Mathematical optimization approaches that guarantee 

global optimality of solutions or tight bounds on the global optimal value have nevertheless been suc- 

cessfully applied to several variants of facility layout. This review covers three classes of layout problems, 

namely row layout, unequal-areas layout, and multifloor layout. We summarize the main contributions 

to the area made using mathematical optimization, mostly mixed integer linear optimization and conic 

optimization. For each class of problems, we also briefly discuss directions that remain open for future 

research. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

Facility layout problems (FLPs) are a general class of operations 

research problems concerned with finding the optimal arrange- 

ment of a given number of nonoverlapping indivisible departments 

within a given facility. The objective is to minimize the total ex- 

pected cost of inter-departmental flows inside the facility, where 

the cost incurred for each pair of departments is equal to the 

rectilinear distance between the centroids of the departments mul- 

tiplied by their pairwise cost. This cost, generally non-negative, ac- 

counts in the aggregate for adjacency preferences as well as costs 

that may arise from transportation, the construction of a material- 

handling system, or connection wiring. The facility and the 

departments are rectangular, and the area of each department is 

specified, but if the department’s dimensions can vary, then deter- 

mining them is also part of the FLP. 

FLPs have a variety of applications. Much of the work was mo- 

tivated by the physical organization of manufacturing systems, see 

e.g. Meller and Gau (1996) . The FLP is particularly relevant in flexi- 

ble manufacturing systems that produce an array of different parts. 

The layout of the production components has a significant impact 

on the costs and the productivity of these systems, see e.g. Hassan 

(1994) . Other applications of FLPs include balancing hydraulic 
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turbine runners ( Laporte & Mercure, 1988 ), algorithm initialization 

in numerical analysis ( Brusco & Stahl, 20 0 0 ), VLSI fixed-outline 

floorplanning ( Luo, Anjos, & Vannelli, 2008 ), and optimal data 

memory layout generation for digital signal processors ( Wess & 

Zeitlhofer, 2004 ). 

FLPs have been extensively studied in the literature since the 

1960s. Numerous variations on the basic problem described above 

have been considered, and different models have been proposed 

for each variation. Examples of such variations are: specially struc- 

tured instances of the problem (e.g. layouts on rows or on loops); 

dynamic FLPs with time-dependencies; FLPs under uncertainty in 

the data; and multi-objective FLPs. We refer the reader to the 

books ( Heragu, 2008; Kusiak, 1990 ) and survey papers ( Meller & 

Gau, 1996; Singh & Sharma, 2006 ) for more information about the 

FLP and its variations. A growing collection of FLP benchmark in- 

stances is available online ( Anjos, 2015 ). 

The FLP is NP-hard in general, so solving it to global optimality 

in reasonable time is generally difficult. Indeed the restricted ver- 

sion where the dimensions of the departments are all equal and 

fixed, and the optimization is taken over a fixed set of possible lo- 

cations for the departments, is known as the quadratic assignment 

problem, a combinatorial optimization problem well known for 

its computational difficulty, see e.g. Loiola, de Abreu, Boaventura- 

Netto, Hahn, and Querido (2007) . 

The constraints of the basic FLP can be grouped into two sets: 

• Department shape requirements include the required area, and 

restrictions on the dimensions (height and width) such as 
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bounds on the ratios height/width and width/height, called as- 

pect ratios. These requirements generally lead to convex con- 

straints but still pose some challenges. In particular, requiring 

small aspect ratios, while desirable in real-world applications, 

generally makes the problem harder. On the other hand, while 

the area constraint traditionally required a careful linearization 

approach, it can be modeled exactly using conic optimization, 

see e.g. Anjos and Liers (2012) . 
• Department location requirements include the nonoverlap of de- 

partments, fitting every department within the facility, assign- 

ing certain departments to, or forbidding them from, particular 

locations within the facility. The main challenge here are the 

nonoverlap constraints that are inherently nonconvex and com- 

binatorial. 

This review is focused on FLPs with the following properties: 

1. the departments have different areas 

2. the facility can be one-, two-, or three-dimensional. 

The different dimensions lead to the three broad classes of FLPs 

covered in this review, namely row FLPs ( Section 2 ), unequal-areas 

FLPs ( Section 3 ), and multifloor FLPs ( Section 4 ). 

One-dimensional facilities lead to row FLPs, and we categorize 

them in terms of the number of rows: single-row, double-row, or 

multi-row. Single-row and double-row problems commonly occur 

in practical applications, as we discuss in Sections 2.1 and 2.2 re- 

spectively. Multi-row problems are a natural extension of the prob- 

lem to three or more rows, and are considered in Section 2.3 . 

Unequal-areas FLPs have two-dimensional facilities with a sin- 

gle floor, and we assume that the facility is rectangular and that 

all the departments fit inside the facility. Unlike in the case of row 

layouts, not only the position but also the dimensions of each de- 

partment are optimized. After discussing models and approaches 

for the basic two-dimensional problem in Sections 3.1 –3.4 , we con- 

sider in Section 3.5 the special case of flexible bay layouts, a type 

of layout that resembles row FLPs but with the fundamental differ- 

ence that the width of the bays can vary, depending on the total 

area of the departments in each bay. 

Three-dimensional facilities give rise to multifloor FLPs in 

which departments are to be placed over two or more floors. This 

is the focus of Section 4 . The survey in Section 4.1 shows that 

most of the literature proposes models for specific applications 

rather than for the general problem. For this reason we propose 

in Section 4.2 a formulation for a generic form of the problem that 

we hope will motivate further research into multifloor FLP. 

Regarding the choice of methodologies, we limit the scope of 

this review to mathematical optimization-based approaches. These 

include exact methods, but as the problems increase in difficulty 

very rapidly, we also include heuristic methods that use math- 

ematical optimization approximations and/or relaxations. While 

there is a rich literature on heuristic algorithms for FLPs (see 

e.g. Kothari & Ghosh, 2012; Meller & Gau, 1996; Singh & Sharma, 

2006 ), our focus here is on mathematical optimization approaches, 

primarily mixed integer linear optimization (MILO), often referred 

to as mixed integer programing or MIP, semidefinite optimization 

(SDO), also called semidefinite programing or SDP, and nonlinear 

optimization. Because of their importance to the success of these 

approaches, we also include brief discussions of symmetry break- 

ing ( Section 5 ) and valid inequalities ( Section 6 ) as these are es- 

sential ingredients for solving the resulting relaxations efficiently. 

We conclude with a summary of directions for future research 

in Section 7 . 

2. Row FLPs 

Row FLPs share the following common problem statement: 

given a set of rectangular departments each of a given length, a 

Fig. 1. SRFLP along the path of an AGV. 

number of rows, and a pairwise non-negative weight for each pair 

of departments, determine (i) an assignment of departments to 

rows, and (ii) the positions of the departments in each row, so that 

the total of the weighted center-to-center distances is minimized. 

Row FLPs arise in practical contexts where the departments are to 

be placed in rows with a predetermined separation between the 

rows due to factors such as the material-handling system or the 

flows of people. Moreover, within each row, a minimum clearance 

between departments is needed to satisfy safety and operational 

requirements. We assume that this clearance is included in the 

lengths of the departments. We also assume that the rows and the 

departments all have the same height, that any department can be 

assigned to any row, and that the distances between adjacent rows 

are equal. Under these assumptions, solving an instance of the row 

FLP means resolving three questions: 

1. Assign each department to exactly one row; 

2. Express mathematically the center-to-center distance between 

departments (that may or may not be in the same row); 

3. Handle possible empty space between departments. 

Section 2.1 is concerned with the simplest version of row FLP, 

namely the single-row FLP. Section 2.2 covers the double-row FLP, 

and Section 2.3 extends the coverage to the general multirow FLP. 

2.1. The single-row FLP 

An instance of the Single-Row FLP (SRFLP) consists of n one- 

dimensional departments with given positive lengths � 1 , . . . , � n and 

pairwise costs c ij . The problem is to find a permutation of the de- 

partments that minimizes the weighted sum of the pairwise dis- 

tances. Fig. 1 provides an illustration of the SRFLP in the context 

of placing the departments along the path of an automated guided 

vehicle (AGV) transporting material between the departments; in 

this context the objective is to minimize the distance travelled by 

the AGV. The SRFLP is the most studied of the row FLPs. Some- 

times called the one-dimensional space allocation problem, it has 

interesting connections to well-known combinatorial optimization 

problems such as maximum-cut, quadratic linear ordering, and lin- 

ear arrangement (see Anjos & Liers, 2012 ). 

Because there is only one row, there is no need to assign de- 

partments to rows. Moreover, c ij ≥ 0 ensures that there is no 

empty space between departments at optimality. Hence the re- 

maining question is to express the center-to-center distance be- 

tween departments. 

A key observation, first made by Simmons (1969) , is that the 

SRFLP can be expressed as 

min 

π∈ �n 

∑ 

i< j 

c i j 

[ 
1 

2 

(
� i + � j 

)
+ D π (i, j) 

] 
, 

where �n denotes the set of all permutations of { 1 , 2 , . . . , n } , and 

D π ( i , j ) is the center-to-center distance between departments i and 

j under permutation π . 

A first observation here that if π ′ denotes the permuta- 

tion symmetric to π , defined by π ′ 
i 

= πn +1 −i , i = 1 , . . . , n, then 

D π (i, j) = D π ′ (i, j) . In other words, the order of the departments 

in a particular layout can be reversed without changing the value 

of the objective function. Hence, it is possible to simplify the prob- 

lem by considering only the permutations that have a particular 
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