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a b s t r a c t 

This paper studies Minimum Spanning Trees under incomplete information assuming that it is only 

known that vertices belong to some neighborhoods that are second order cone representable and dis- 

tances are measured with a � q -norm. Two Mixed Integer Non Linear mathematical programming formu- 

lations are presented, based on alternative representations of subtour elimination constraints. A solu- 

tion scheme is also proposed, resulting from a reformulation suitable for a Benders-like decomposition, 

which is embedded within an exact branch-and-cut framework. Furthermore, a mathheuristic is devel- 

oped, which alternates in solving convex subproblems in different solution spaces, and is able to solve 

larger instances. The results of extensive computational experiments are reported and analyzed. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

Nowadays Combinatorial Optimization (CO) lies in the heart of 

multiple applications in the field of Operations Research. Many 

such applications can be formulated as optimization problems de- 

fined on graphs where some particular structure is sought satisfy- 

ing some optimality property. Traditionally this type of problems 

assumed implicitly the exact knowledge of all input elements, and, 

in particular, of the precise position of vertices and edges. Never- 

theless, this assumption does not always hold, as uncertainty, lack 

of information, or some other factors may affect the relative po- 

sition of the elements of the input graph. Hence, new tools are 

required to give adequate answers to these challenges, which have 

been often ignored by standard CO tools. 

A matter that, in this context, has attracted the interest of re- 

searchers over the last years is the solution of certain CO problems 

when the exact position of the vertices of the underlying graph is 

not known with certainty. If probabilistic information is available, 

then stochastic programming tools can be used, and optimiza- 

tion over expected values carried out. Moreover, even under the 

assumption of incomplete information one could use a uniform 

distribution and still apply such an approach. However, the use 

of probabilistic information and allowing to consider all possible 
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locations for the vertices is not always suitable. For instance, when 

a unique representative associated with each point of the input 

graph must be determined. Scanning the related literature one can 

find papers applying both methodologies. Examples of stochastic 

approaches are for instance Bertsimas and Howell (1993) or Frank 

(1969) . Examples of the second type of approach arise in variants 

of the traveling salesman problem (TSP), Minimum Spanning Tree 

(MST), or facility location problems that deal with demand regions 

instead of demand points (see Arkin and Hassin, 1994; Brimberg 

and Wesolowsky, 2002; Cooper, 1978; Dror, Efrat, Lubiw, and 

Mitchell, 2003; Juel, 1981; Nickel, Puerto, and Rodríguez-Chía, 

2003; Yang, Lin, Xu, and Xie, 2007 , to mention just a few). 

A relevant common question raised by the latter class of prob- 

lems is how to model and solve optimization problems on graphs 

when vertices are not points but regions in a given domain. The 

above mentioned case of the TSP, first introduced by Arkin and 

Hassin (1994, 20 0 0) , has been addressed recently by a number 

of authors. It generalizes the Euclidean TSP and the group Steiner 

tree problem, and has applications in VLSI-design and other rout- 

ing problems, in which there exist constraints on the position of 

the vertices. Several inapproximability results and approximation 

algorithms have been developed for particular cases. The case of 

the spanning tree problem with neighborhoods (MSTN) was first 

addressed by Yang et al. (2007) , who proved that the general case 

of the problem in the plane is NP-hard (result also reproved by 

Löffler & van Kreveld, 2010 ), and gave several approximation algo- 

rithms and a PTAS for the particular case of disjoint unit disks in 

the plane. Some extensions considering the maximization of the 
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weights are studied in Dorrigiv et al. (2013) . In particular, they 

proved the non existence of FPTAS for MSTN, for general disjoint 

disks, in the planar Euclidean case. Disser, Mihalák, Montanari, and 

Widmayer (2014) consider the shortest path problem and the recti- 

linear MSTN, and give some approximability results. To the best of 

our knowledge, Gentilini, Margot, and Shimada (2013) are the first 

authors to propose an exact Mixed Integer Non Linear Program- 

ming (MINLP) formulation for the TSP with neighborhoods, but we 

are not aware of any MINLP for the MSTN. 

Our goal in this paper is to develop MINLP formulations and 

solution methods for the MSTN. We first present two MINLP for- 

mulations that allow to solve medium size MSTN planar and 3D 

Euclidean instances with up to 20 vertices, for neighborhoods of 

varying radii using an on-the-shelf solver. Furthermore, we develop 

an effective branch-and-cut strategy, based on a generalized Ben- 

ders decomposition ( Benders, 1962; Geoffrion, 1972 ), and compare 

its performance with that of the solver for the proposed formula- 

tions. For this we present an alternative formulation for the MSTN, 

in which the master problem consists of finding a MST with costs 

derived from a continuous non linear (slave) subproblem, and we 

develop the expression and separation of the cuts that are added 

in the solution algorithm. Given that both the solver (for the two 

MINLP formulations) and the exact branch-and-cut algorithm can 

be too demanding, in terms of their computing times, we have 

also developed an effective and efficient mathheuristic. The math- 

heuristic stems from the observation that the subproblems defined 

in the solution spaces of each of the two main sets of variables 

are convex (so they can be solved very efficiently); it alternates in 

solving subproblems in each of these solution spaces. 

The paper is organized as follows. Section 2 is devoted to intro- 

duce the MSTN and to state a generic formulation. In Section 3 we 

present and compare two MINLP formulations for the MSTN, based 

on alternative representations of the spanning trees polytope. 

Section 4 develops the exact branch-and-cut algorithm, based on 

a Benders-like decomposition scheme: we define the master and 

the non linear subproblem, and derive the cuts and their separa- 

tion. In Section 4.1 we first compare the performance of the on- 

the-shelf solver with the two MINLP formulations, and then we re- 

port the numerical results obtained with the exact row-generation 

algorithm. The mathheuristic is presented in Section 5 , where we 

also give the numerical results that it produces. The paper ends 

with some concluding remarks and our list of references. 

2. Minimum Spanning Trees with neighborhoods 

Let G = (V, E) be a connected undirected graph, whose vertices 

are embedded in R 

d , i.e., v ∈ R 

d for all v ∈ V . Associated with each 

vertex v ∈ V, let N v ⊆ R 

d denote a convex set containing v in its 

interior. Let also ‖·‖ denote a given norm. 

Feasible solutions to the Minimum Spanning Tree with Neigh- 

borhoods (MSTN) problem consist of a set of points, Y ∗ = { y v ∈ 

N v | v ∈ V } , together with a spanning tree T ∗ on the graph G 

∗ = 

(Y ∗, E ∗) , with edge set E ∗ = {{ y v , y w 

} : { v , w } ∈ E} . Edge lengths are 

given by the norm-based distance between the selected points rel- 

ative to ‖·‖ , i.e.: 

d(y v , y w 

) = ‖ y v − y w 

‖ , for all { y v , y w 

} ∈ E ∗. 

The overall cost of ( Y ∗, T ∗) is therefore 

d(T ∗) = 

∑ 

e = { y v ,y w }∈ T ∗
d(y v , y w 

) . 

The MSTN is to find a feasible solution, ( Y ∗, T ∗), of minimum total 

cost. 

Particular cases of the MSTN have been studied in the literature 

for planar graphs. Disser et al. (2014) studied the case when the 

sets N v are rectilinear neighborhoods centered at v ∈ V . Dorrigiv 

et al. (2013) addressed the problem when the sets N v are disjoint 

Euclidean disks. Both referenced works study the complexity of the 

considered problems but do not attempt to develop MINLP formu- 

lations or solution methods for it. 

In this paper, we consider the general case where the graph G 

is embedded in R 

d . Even if our developments can be extended to 

generic convex sets, we focus on the case where N v is second or- 

der cone (SOC) representable ( Lobo, Vandenberghe, Boyd, & Lebret, 

1998 ). The main reason for this is that state-of-the-art solvers in- 

corporate mixed integer non-linear implementations of SOC con- 

straints. Such a modeling assumption could be readily overcome if 

on-the-shelf solvers incorporated more general tools to deal with 

convex sets. 

Observe that SOC representable neighborhoods allow to model, 

as a particular case, centered balls of a given radius r v , associated 

with the standard � p -norm with p ∈ [1, ∞ ] in R 

d , that we denote 

by ‖·‖ p , i.e., neighborhoods in the form N v = { x ∈ R 

d : ‖ x − v ‖ p ≤
r v } , where 

‖ z‖ p = 

{ (∑ d 
k =1 | z k | p 

) 1 
p 

if p < ∞ 

max k ∈{ 1 , ... ,d} | z k | if p = ∞ 

. 

The reader is referred to Blanco, Puerto, and El-Haj Ben-Ali 

(2014) for further details on the SOC constraints that allow to rep- 

resent (as intersections of second order cone and/or rotated second 

order cone constraints) such norm-based neighborhoods. Indeed, 

we can also easily handle neighborhoods defined as bounded poly- 

hedra in R 

d , as well as intersections of polyhedra and balls. Hence, 

more sophisticated convex neighborhoods can be suitably repre- 

sented or approximated using elements from the above mentioned 

families of sets. 

Two extreme situations that can be modeled within our frame- 

work are the following. If the neighborhood for each vertex v ∈ V 

is the singleton N v = { v } , then MSTN becomes the classical MST 

problem with edge lengths given by the norm-based distances be- 

tween each pair of vertices. On the other hand, if the considered 

neighborhoods are big enough so that 
⋂ 

v ∈ V N v � = ∅ , then the prob- 

lem reduces to finding a degenerate one-vertex tree and the solu- 

tion to the MSTN is that vertex with cost 0. 

Throughout this paper we use the following notation: 

• ST G as the set of incidence vectors associated with spanning 

trees on G , i.e. ST G = { x ∈ R 

| E| 
+ : x is a spanning tree on G } . 

• Y = 

∏ 

v ∈ V N v , where N v is the neighborhood associated to ver- 

tex v , which contains the possible sets of vertices for the span- 

ning trees of MSTN. 

Then, the MSTN can be stated as: 

min 

∑ 

e ∈ E 
d(y v , y w 

) x e (MSTN) 

s.t. x ∈ ST G , y ∈ Y. 

Several observations follow from the formulation above: 

1. Fixing x ∈ ST G in MSTN results in a continuous SOC problem, 

which is well-known to be convex ( Lobo et al., 1998 ). On the 

other hand, fixing y ∈ Y results in a standard MST problem. It is 

a well-known that MST admits continuous linear programming 

representations ( Edmonds, 1970; Martin, 1991 ). Thus, MSTN can 

be seen as a biconvex optimization problem, which is neither 

convex nor concave ( Gorski, Pfeuffer, & Klamroth, 2007 ). 

2. Due to the expression of its objective function, (MSTN) is not 

separable, even if each of its sets of variables x and y belong to 

convex domains in different spaces. 

3. Since (MSTN) combines the above two subproblems, it is suit- 

able to be represented as a MINLP. 
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