
European Journal of Operational Research 263 (2017) 62–71

Contents lists available at ScienceDirect

European Journal of Operational Research

journal homepage: www.elsevier.com/locate/ejor

Discrete Optimization

A hybrid primal heuristic for finding feasible solutions to mixed

integer programs

Carlos E. Andrade

a , ∗, Shabbir Ahmed

a , George L. Nemhauser a , Yufen Shao

b

a H. Milton Stewart School of Industrial & Systems Engineering, Georgia Institute of Technology, 755 Ferst Drive NW, Atlanta, GA 30332, USA
b ExxonMobil Upstream Research Company, 3120 Buffalo Speedway, Houston, TX 77098, USA

a r t i c l e i n f o

Article history:

Received 17 June 2016

Accepted 3 May 2017

Available online 9 May 2017

Keywords:

Integer programming

Primal heuristics

Feasibility

a b s t r a c t

We present a new framework for finding feasible solutions to mixed integer programs (MIP). We use

the feasibility pump heuristic coupled to a biased random-key genetic algorithm (BRKGA). The feasibility

pump heuristic attempts to find a feasible solution to a MIP by first rounding a solution to the linear

programming (LP) relaxation to an integer (but not necessarily feasible) solution and then projecting it to

a feasible solution to the LP relaxation. The BRKGA is able to build a pool of projected and rounded but

not necessarily feasible solutions and to combine them using information from previous projections. This

information is also used to fix variables during the process to speed up the solution of the LP relaxations,

and to reduce the problem size in enumeration phases. Experimental results show that this approach is

able to find feasible solutions for instances where the original feasibility pump or a commercial mixed

integer programming solver often fail.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

An important feature of modern mixed integer programming

(MIP) algorithms is the ability to effectively find feasible solutions

quickly. A variety of heuristic methods have been developed for

this purpose. See (Berthold & Hendel, 2015; Fischetti & Salvagnin,

2009; Glover & Laguna, 1997a, 1997b) for surveys of these heuris-

tics. The Feasibility Pump heuristic from Fischetti, Glover, and Lodi

(2005) has received a lot of attention because of its ability and ef-

ficiency to find feasible solutions relatively quickly. Several com-

mercial and open source solvers use internal implementations of

the feasibility pump. The feasibility pump and its improvements

and variants (Achterberg & Berthold, 2007; Baena & Castro, 2011;

Boland et al., 2014; Fischetti & Salvagnin, 2009; Santis, Lucidi, &

Rinaldi, 2014) are built on a clever and straightforward idea for

finding a feasible solution to a MIP by first rounding a solution to

the LP relaxation to an integer (but not necessarily feasible) so-

lution and then projecting it to a feasible solution to the linear

programming (LP) relaxation. Essentially, the feasibility pump can

be considered as a local search procedure operating over a search

neighborhood consisting of linear projections and roundings. Due

∗ Corresponding author. Present address: AT&T Labs Research, 200 South Laurel

Avenue, Middletown, NJ 07748, USA.

E-mail addresses: carlos.andrade@gatech.edu , cea@research.att.com

(C.E. Andrade), shabbir.ahmed@isye.gatech.edu (S. Ahmed),

george.nemhauser@isye.gatech.edu (G.L. Nemhauser), yufen.shao@exxonmobil.com

(Y. Shao).

to this, the feasibility pump suffers from fast convergence to local

optima and the inability to escape from them. This fact was noted

by the authors of the original method in Fischetti et al. (2005) and

also in subsequent works (Achterberg & Berthold, 2007; Bertacco,

Fischetti, & Lodi, 2007; Fischetti & Salvagnin, 2009). To circumvent

this situation, several types of perturbations were proposed. Most

of them occur when a cycling is detected. Although such pertur-

bations drive the algorithm to explore other regions of the search

space, they often incur information loss since the feasibility pump

has no memory. For instance, some variables may take the same

value across several restarts, and they could be fixed to reduce the

problem size. However, the feasibility pump does not use this in-

formation.

We present a primal framework that makes use of information

collected during the iterations of the feasibility pump. Such infor-

mation consists of fractional infeasible solutions and their respec-

tive final roundings. The framework is able to combine the round-

ings that are used in subsequent feasibility pump calls. In addition,

the framework also provides valuable information that can be used

for variable fixing which reduces the size of LP relaxations that

need to be solved. We use a biased random-key genetic algorithm

to evolve a set of roundings and projections but any population-

based method may be used. We restrict the presentation to pure

binary and mixed binary MIPs, although the techniques presented

here can be easily adapted to general MIPs.

The structure of this paper is as follows. Section 2 describes the

basic idea of the feasibility pump, improvements, and variations.

http://dx.doi.org/10.1016/j.ejor.2017.05.003

0377-2217/© 2017 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.ejor.2017.05.003
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2017.05.003&domain=pdf
mailto:carlos.andrade@gatech.edu
mailto:cea@research.att.com
mailto:shabbir.ahmed@isye.gatech.edu
mailto:george.nemhauser@isye.gatech.edu
mailto:yufen.shao@exxonmobil.com
http://dx.doi.org/10.1016/j.ejor.2017.05.003

C.E. Andrade et al. / European Journal of Operational Research 263 (2017) 62–71 63

In Section 3 , we propose a framework used to improve the round-

ing and variable fixing processes. Section 4 describes the imple-

mentation details and experimental environment. Section 5 reports

the computational experiments comparing the proposed frame-

work with the feasibility pump 2.0, and a commercial solver. In

Section 6 , we give some conclusions.

2. The feasibility pump

2.1. Basic procedure

Here we present a high level overview of the feasibility pump.

For a more detailed descriptions, see Fischetti and Salvagnin

(2009) and Achterberg and Berthold (2007) . Without loss of gener-

ality, consider the following mixed integer linear program

MIP = min

x
{ c T x : Ax ≤ b, � ≤ x ≤ u, x i ∈ { 0 , 1 } for all i ∈ I} ,

where A ∈ R

m ×n , b ∈ R

m , c, �, u ∈ R

n , and I ⊆ N = { 1 , . . . , n } . Let

P = { x : Ax ≤ b, � ≤ x ≤ u } be the feasible region of the LP relax-

ation. Consider x ∗ ∈ P a fractional feasible solution for MIP (we say

that x ∗ is LP-feasible). Let ˜ x satisfy ˜ x i ∈ Z for all i ∈ I , be an inte-

ger and not necessarily feasible solution. We compute the distance

between x ∗ and ˜ x using

�(x ∗, ̃ x) =

∑

i ∈ I
| x ∗i − ˜ x i | . (1)

Using this concept of distance, we fix ˜ x and solve the following

problem:

LP

∗ = min

x ′
{ �(x ′ , ̃ x) : Ax ′ ≤ b, � ≤ x ′ ≤ u, x ′ i ∈ R for all i ∈ N} ,

i.e., the original objective function is replaced by the minimization

of (1) and all integrality constraints are dropped. LP ∗ is called Lin-

ear Program (LP) projection . Objective function (1) can be linearized

by reformulating LP ∗, see Fischetti and Salvagnin (2009) for details.

Let x ∗ be an optimal solution for LP ∗. If x ∗ is integer (x ∗
i

∈ Z , for all

i ∈ I), or �(x ∗, ̃ x) = 0 , we have obtained an integer feasible solu-

tion and we may stop the algorithm. Otherwise, we take ˜ x = � x ∗�
as a rounding of x ∗ and solve the LP projection again. If during this

process, we find a rounded solution already found in previous it-

erations, we have detected a cycle. In this case, random perturba-

tions are performed to escape from the local minima.

A number of variations of the feasibility pump has been pro-

posed. Bertacco et al. (2007) proposed a 3-stage algorithm where

the idea is to apply pumping cycles for different sets of vari-

ables in each stage. This variation is the most used in practice.

In Achterberg and Berthold (2007) , a variation called Objective Fea-

sibility Pump is proposed where the distance function � is used

together with the original objective function. Other authors con-

sidered modifications during the rounding phase. In Fischetti and

Salvagnin (2009) , the so called Feasibility Pump 2.0 makes use of

constraint propagation techniques during the rounding phase. This

version is considered the most effective variation of the feasibility

pump. In Baena and Castro (2011) , roundings are performed over a

line segment between a computed feasible point and the analytic

center of the relaxed linear problem. In Boland et al. (2014) , a sim-

ilar approach is developed where the authors used rays directed to

the feasible region instead of the analytic center. Hanafi, Lazi ́c, and

Mladenovi ́c (2010) proposed a Variable Neighborhood Pump (VNP)

heuristic that combines Variable Neighborhood Branching (VNB)

local search (Hansen, Mladenovi ́c, & Uroševi ́c, 2006) with the fea-

sibility pump.

2.2. Computational burden and loss of information

The key aspect of the feasibility pump is to alternate between

LP-feasible solutions obtained from a LP projection, and infeasi-

ble integer solutions obtained from roundings of non-integer so-

lutions. Both operations can be very computationally demanding.

While simple rounding is very fast (but not so effective), constraint

propagation rounding can take many CPU cycles depending on the

implementation details. But either rounding schemes are one or

more orders of magnitude faster than the LP projection that re-

quires solving a linear program which can be very costly. Although

solvers usually keep track of the information of previous optimiza-

tions, each LP projection has a different objective function (due to

the new roundings) and may change the direction of optimization

making the previous optimization information useless.

In the original feasibility pump and its variants, a large amount

of computational effort may be required until the algorithm finds

a local minima or detects cycling. However, most information gen-

erated during this optimization is lost. Some implicit information

is retained since the iterations between roundings and LP projec-

tions tend to “fix” some variables, i.e., some variables will have the

same value during several pumping cycles. In this sense, all infor-

mation the feasibility pump uses is very localized and immediate

with respect to the last iteration.

Other factors that contribute to the information loss are the

restarts. Restarts help the algorithm to explore other regions in the

solution landscape. However, the way that a restart is implemented

in the feasibility pump redirects the search to other regions with-

out carrying information other than the shifting based on the frac-

tionality. Therefore, the algorithm may “forget” the frequent values

of some variables which can be used to reduce the dimensionality

of the problem.

We propose to use such information by means of a evolution-

ary framework. The collected information is kept and evolve a pool

of projections and roundings which are used to fix variables, per-

form local MIP searches, and create other fractional (possibly not

feasible) solutions. Next, we describe this approach.

3. A primal framework for the feasibility pump

Our approach is based on a pool or population of roundings and

LP projections that are evolved towards “less infeasible” solutions.

In this context, a solution is a pair of vectors representing a round-

ing and a LP projection from pumping cycles, respectively. There

are three main components. The first component is called the evo-

lutionary phase responsible for applying the feasibility pump from

several starting points and combining the results to obtain “less

infeasible” solutions. The second component is called the local MIP

search phase that uses strategies to fix and unfix variables based on

the pool of solutions obtained in the evolutionary phase, and then

applies an enumeration procedure. The third component is called

the fixing phase used to reduce the dimensionality of the problem

used in the evolutionary phase based on information from the pool

of solutions. Next, we present the general framework and describe

each phase in detail.

3.1. The general framework

Algorithm 1 describes the main procedures of our framework.

The algorithm starts by preprocessing the instance and trying to

reduce the domain of the variables (line 1). At this time, it also

collects information from the LP relaxation that can be used to de-

termine which type of variable fixings are to be performed and the

initial percentage for the fixing phase. Dual information is collected

and use to filter constraints in the local MIP search phase.

The initial pool of solutions or population is built from LP relax-

ations and random vectors. First in line 2, a solution to a relaxation

which drops all integrality constraints is added to the population

P (w.l.o.g., we consider a minimization problem). To include this

relaxation in the initial population ensures that the algorithm will

Download English Version:

https://daneshyari.com/en/article/4959604

Download Persian Version:

https://daneshyari.com/article/4959604

Daneshyari.com

https://daneshyari.com/en/article/4959604
https://daneshyari.com/article/4959604
https://daneshyari.com

