
European Journal of Operational Research 263 (2017) 72–81

Contents lists available at ScienceDirect

European Journal of Operational Research

journal homepage: www.elsevier.com/locate/ejor

Discrete Optimization

Exploiting variable associations to configure efficient local search

algorithms in large-scale binary integer programs

�

Shunji Umetani

Graduate School of Information Science and Technology, Osaka University, 1–5 Yamadaoka, Suita, Osaka 565-0871, Japan

a r t i c l e i n f o

Article history:

Received 28 April 2016

Accepted 11 May 2017

Available online 31 May 2017

Keywords:

Combinatorial optimization

Heuristics

Set covering problem

Set partitioning problem

Local search

a b s t r a c t

We present a data mining approach for reducing the search space of local search algorithms in a class

of binary integer programs including the set covering and partitioning problems. The quality of locally

optimal solutions typically improves if a larger neighborhood is used, while the computation time of

searching the neighborhood increases exponentially. To overcome this, we extract variable associations

from the instance to be solved in order to identify promising pairs of flipping variables in the neighbor-

hood search. Based on this, we develop a 4-flip neighborhood local search algorithm that incorporates

an efficient incremental evaluation of solutions and an adaptive control of penalty weights. Computa-

tional results show that the proposed method improves the performance of the local search algorithm

for large-scale set covering and partitioning problems.

© 2017 The Author(s). Published by Elsevier B.V.

This is an open access article under the CC BY license. (http://creativecommons.org/licenses/by/4.0/)

1. Introduction

The Set Covering Problem (SCP) and Set Partitioning Prob-

lem (SPP) are representative combinatorial optimization problems

that have many real-world applications, such as crew scheduling

(Barnhart, Johnson, Nemhauser, Savelsbergh, & Vance, 1998; Hoff-

man & Padberg, 1993; Mingozzi, Boschetti, Ricciardelli, & Bianco,

1999), vehicle routing (Agarwal, Mathur, & Salkin, 1989; Bal-

dacci, Christofides, & Mingozzi, 2008; Bramel & Simchi-Levi, 1997;

Hashimoto et al., 2009), facility location (Boros et al., 2005; Fara-

hani, Asgari, Heidari, Hosseininia, & Goh, 2012) and logical analysis

of data (Boros et al., 20 0 0; Hammer & Bonates, 2006). Real-world

applications of SCP and SPP are comprehensively reviewed in Ceria,

Nobili, and Sassano (1997) and Balas and Padberg (1976) , respec-

tively.

Given a ground set of m elements i ∈ M = { 1 , . . . , m } , n subsets

S j ⊆ M (| S j | ≥ 1), and their costs c j ∈ R (R is the set of real val-

ues) for j ∈ N = { 1 , . . . , n } , we say that X ⊆ N is a cover of M if ⋃

j∈ X S j = M holds. We also say that X ⊆ N is a partition of M if ⋃

j∈ X S j = M and S j 1 ∩ S j 2 = ∅ for all j 1 , j 2 ∈ X hold. The goals of

SCP and SPP are to find a minimum cost cover and partition X of

M , respectively. In this paper, we consider the following class of

� A preliminary version of this paper was presented in Umetani (2015) .

E-mail address: umetani@ist.osaka-u.ac.jp

Binary Integer Programs (BIPs) including SCP and SPP:

minimize
∑

j∈ N
c j x j

subject to

∑

j∈ N
a i j x j ≤ b i , i ∈ M L , ∑

j∈ N
a i j x j ≥ b i , i ∈ M G , ∑

j∈ N
a i j x j = b i , i ∈ M E ,

x j ∈ { 0 , 1 } , j ∈ N,

(1)

where a ij ∈ {0, 1} and b i ∈ Z + (Z + is the set of nonnegative integer

values). We note that a i j = 1 if i ∈ S j holds and a i j = 0 otherwise,

and x j = 1 if j ∈ X holds and x j = 0 otherwise. That is, a column

vector a j = (a 1 j , . . . , a m j)
� of the matrix (a ij) represents the cor-

responding subset S j = { i ∈ M | a i j = 1 } , and the vector x also rep-

resents the corresponding cover (or partition) X = { j ∈ N | x j = 1 } .
For notational convenience, we denote M = M L ∪ M G ∪ M E . For each

i ∈ M , let N i = { j ∈ N | a i j = 1 } be the index set of subsets S j that

contain the elements i , and let s i (x) =

∑

j∈ N a i j x j be the left-hand

side of the i th constraint.

Continuous development of mathematical programming has

much improved the performance of exact and heuristic algo-

rithms and this has been accompanied by advances in com-

puting machinery. Many efficient exact and heuristic algorithms

for large-scale SCP and SPP instances have been developed

http://dx.doi.org/10.1016/j.ejor.2017.05.025

0377-2217/© 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license. (http://creativecommons.org/licenses/by/4.0/)

http://dx.doi.org/10.1016/j.ejor.2017.05.025
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2017.05.025&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:umetani@ist.osaka-u.ac.jp
http://dx.doi.org/10.1016/j.ejor.2017.05.025
http://creativecommons.org/licenses/by/4.0/

S. Umetani / European Journal of Operational Research 263 (2017) 72–81 73

(Atamtürk, Nemhauser, & Savelsbergh, 1995; Barahona & An-

bil, 20 0 0; Bastert, Hummel, & de Vries, 2010; Borndörfer, 1998;

Boschetti, Mingozzi, & Ricciardelli, 2008; Caprara, Fischetti, & Toth,

1999; Caprara, Toth, & Fischetti, 20 0 0; Caserta, 20 07; Ceria, No-

bili, & Sassano, 1998; Linderoth, Lee, & Savelbergh, 2001; Umetani

& Yagiura, 2007; Wedelin, 1995; Yagiura, Kishida, & Ibaraki, 2006),

many of which are based on a variant of the column generation

method called the pricing method that reduces the number of vari-

ables to be considered in the search by using Linear Programming

(LP) and/or Lagrangian relaxation. However, many large-scale SCP

and SPP instances still remain unsolved because there is little hope

of closing the large gap between the lower and upper bounds of

the optimal values. In particular, the equality constraints of SPP of-

ten make the pricing method less effective because they often pre-

vent solutions from containing highly evaluated variables together.

In this paper, we consider an alternative approach for extracting

useful features from the instance to be solved with the aim of re-

ducing the search space of local search algorithms for large-scale

SCP and SPP instances.

In the design of local search algorithms for combinatorial op-

timization problems, the quality of locally optimal solutions typi-

cally improves if a larger neighborhood is used. However, the com-

putation time of searching the neighborhood also increases ex-

ponentially. To overcome this, extensive research has investigated

ways to efficiently implement neighborhood search, which can be

broadly classified into three types: (i) reducing the number of

candidates in the neighborhood (Pesant & Gendreau, 1999; Shaw,

Backer, & Furnon, 2002; Yagiura & Ibaraki, 1999; Yagiura, Kishida,

& Ibaraki, 2006), (ii) evaluating solutions by incremental computa-

tion (Michel & Van Hentenryck, 20 0 0; Van Hentenryck & Michel,

2005; Voudouris, Dorne, Lesaint, & Liret, 2001; Yagiura & Ibaraki,

1999), and (iii) reducing the number of variables to be considered

by using LP and/or Lagrangian relaxation (Caprara, Fischetti, & Toth,

1999; Ceria, Nobili, & Sassano, 1998; Umetani, Arakawa, & Yagiura,

2013; Yagiura, Kishida, & Ibaraki, 2006).

To suggest an alternative, we develop a data mining approach

for reducing the search space of local search algorithms. That is,

we construct a k -nearest neighbor graph by extracting variable

associations from the instance to be solved in order to identify

promising pairs of flipping variables in the neighborhood search.

We also develop a 4-flip neighborhood local search algorithm that

flips four variables alternately along 4-paths or 4-cycles in the k -

nearest neighbor graph. We incorporate an efficient incremental

evaluation of solutions and an adaptive control of penalty weights

into the 4-flip neighborhood local search algorithm.

2. 2-flip neighborhood local search

Local Search (LS) starts from an initial solution x and then

iteratively replaces x with a better solution x ′ in the neighbor-

hood NB (x) until no better solution is found in NB (x) . For some

positive integer r , let the r -flip neighborhood NB r (x) be the set

of solutions obtainable by flipping at most r variables in x . We

first develop a 2-Flip Neighborhood Local Search (2-FNLS) algo-

rithm as a basic component of our algorithm. In order to improve

efficiency, the 2-FNLS first searches NB 1 (x) , and then searches

NB 2 (x) \ NB 1 (x) only if x is locally optimal with respect to

NB 1 (x) .

The BIP is NP-hard, and the (supposedly) simpler problem of

judging the existence of a feasible solution is NP-complete. We ac-

cordingly consider the following formulation of the BIP that allows

violations of the constraints and introduce the following penalized

objective function with penalty weights w

+
i

∈ R + (R + is the set

of nonnegative real values) for i ∈ M L ∪ M E and w

−
i

∈ R + for i ∈

M G ∪ M E .

minimize z(x) =

∑

j∈ N
c j x j +

∑

i ∈ M L ∪ M E

w

+
i

y +
i

+

∑

i ∈ M G ∪ M E

w

−
i

y −
i

subject to

∑

j∈ N
a i j x j − y +

i
≤ b i , i ∈ M L , ∑

j∈ N
a i j x j + y −

i
≥ b i , i ∈ M G ,

∑

j∈ N
a i j x j − y +

i
+ y −

i
= b i , i ∈ M E ,

x j ∈ { 0 , 1 } , j ∈ N,

y +
i

≥ 0 , i ∈ M L ∪ M E ,

y −
i

≥ 0 , i ∈ M G ∪ M E .

(2)

For a given x ∈ {0, 1} n , we can easily compute optimal

y +
i

= | s i (x) − b i | + and y −
i

= | b i − s i (x) | + , where we denote | x | + =

max { x, 0 } .
Because the region searched by a single application of LS is

limited, LS is usually applied many times. When a locally opti-

mal solution is found, a standard strategy is to update the penalty

weights and to resume LS from the obtained locally optimal so-

lution. We accordingly evaluate solutions by using an alternative

function ˜ z (x) , where the original penalty weight vectors w

+ and

w

− are replaced by ˜ w

+ and

˜ w

−, respectively, and these are adap-

tively controlled during the search (see Section 6 for details).

We first describe how 2-FNLS is used to search NB 1 (x) , which

is called the 1-flip neighborhood. Let

�˜ z j (x) =

{

�˜ z
↑
j
(x) j ∈ N \ X

�˜ z
↓
j
(x) j ∈ X,

(3)

be the increase in ˜ z (x) due to flipping x j ← 1 − x j , where

�˜ z
↑
j
(x) = c j +

∑

i ∈ S j ∩ (M L ∪ M E) ∩{ l| s l (x) ≥b l } ̃
 w

+
i

−
∑

i ∈ S j ∩ (M G ∪ M E) ∩{ l| s l (x) <b l } ̃
 w

−
i
,

�˜ z
↓
j
(x) = − c j −

∑

i ∈ S j ∩ (M L ∪ M E) ∩{ l| s l (x) >b l } ̃
 w

+
i
+

∑

i ∈ S j ∩ (M G ∪ M E) ∩{ l| s l (x) ≤b l } ̃
 w

−
i
,

(4)

are the increases in ˜ z (x) due to flipping x j = 0 → 1 and x j = 1 →

0 , respectively. 2-FNLS first searches for an improved solution ob-

tainable by flipping x j ← 1 − x j for j ∈ N . If an improved solution

exists, it chooses j with the minimum value of �˜ z j (x) and flips

x j ← 1 − x j .

We next describe how 2-FNLS is used to search NB 2 (x) \
NB 1 (x) , which is called the 2-flip neighborhood. We derive con-

ditions that reduce the number of candidates in NB 2 (x) \ NB 1 (x)

without sacrificing the solution quality by expanding the results

as shown in Yagiura, Kishida, and Ibaraki (2006) . Let �˜ z j 1 , j 2
(x) be

the increase in ˜ z (x) due to simultaneously flipping the values of

x j 1 and x j 2 .

Lemma 1. If a solution x is locally optimal with respect to NB 1 (x) ,

then �˜ z j 1 , j 2
(x) < 0 holds only if S j 1 ∩ S j 2 � = ∅ and x j 1 � = x j 2 .

Proof. By the assumption of the lemma, �˜ z j 1 (x) ≥ 0 and

�˜ z j 2 (x) ≥ 0 hold. It is clear from (4) that �˜ z j 1 , j 2
= �˜ z j 1 (x) +

�˜ z j 2 (x) ≥ 0 holds if S j 1 ∩ S j 2 = ∅ .
We show that �˜ z j 1 , j 2

(x) ≥ 0 holds if S j 1 ∩ S j 2 � = ∅ and x j 1 =

x j 2 . First, we consider the case of x j 1 = x j 2 = 1 . If s i (x) = b i + 1

holds for i ∈ S j 1 ∩ S j 2 ∩ (M L ∪ M E) , then decrease of the violation

y +
i

partly cancels by flipping x j 1 = 1 → 0 and x j 2 = 1 → 0 simul-

taneously. Similarly, if s i (x) = b i + 1 holds for i ∈ S j 1 ∩ S j 2 ∩ (M G ∪

M E) , then a new violation y −
i

occurs by flipping x j 1 = 1 → 0 and

Download English Version:

https://daneshyari.com/en/article/4959605

Download Persian Version:

https://daneshyari.com/article/4959605

Daneshyari.com

https://daneshyari.com/en/article/4959605
https://daneshyari.com/article/4959605
https://daneshyari.com

