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a b s t r a c t 

Constraint propagation has been widely used in nonlinear single-objective optimization inside interval 

Branch & Bound algorithms as an efficient way to discard infeasible and non-optimal regions of the 

search space. On the other hand, when considering two objective functions, constraint propagation is 

uncommon. It has mostly been applied in combinatorial problems inside particular methods. The diffi- 

culty is in the exploitation of dominance relations in order to discard the so-called non-Pareto optimal 

solutions inside a decision domain, which complicates the design of complete and efficient constraint 

propagation methods exploiting dominance relations. 

In this paper, we present an interval Branch & Bound algorithm which integrates dominance contrac- 

tors , constraint propagation mechanisms that exploit an upper bound set using dominance relations. This 

method discards from the decision space values yielding solutions dominated by some solutions from the 

upper bound set. The effectiveness of the approach is shown on a sample of benchmark problems. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

Rigorous numerical global optimization aims at finding all the 

optimal, with respect to some objectives, and feasible, with re- 

spect to some constraints, solutions of a nonlinear continuous op- 

timization problem with some numerical guarantees like a pre- 

scribed computational precision or solution existence proof. In 

single-objective optimization, rigorous global methods such as in- 

terval Branch & Bound (B&B) have been designed and they are 

well studied in the literature, see e.g. Hansen and Walster (2003) , 

Kearfott (1996b) , Neumaier (2004) , Van Hentenryck, Michel, and 

Deville (1997) . These methods subdivide the search space into 

smaller parts which are discarded using bounds on the objective 

and pruning techniques so as to isolate the portion of the feasible 

space that contains the global optima. The use of interval analy- 

sis allows rigorous computations (e.g., verified linear relaxations) 

and powerful pruning techniques based on constraint propagation. 

However, the literature on interval B&B for solving nonlinear biob- 

jective optimization is not proficient. In addition, the recent devel- 

opments ( Fernández & Tóth, 2007; Fernández & Tóth, 2009; Kubica 

& Wo ́zniak, 2013; Ruetsch, 2005 ) do not take full benefits of in- 
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terval analysis, in particular constraint propagation although it has 

been used within the B&B-like method PICPA ( Barichard & Hao, 

2003 ). The difficulty of applying such techniques lies in the ex- 

ploitation of the dominance relation in the multiobjective case in 

order to discard non-optimal (dominated) solutions of the search 

space. The method PICPA ( Barichard & Hao, 2003 ) decomposes the 

objective space, which eases application of constraint propagation 

but causes overlapping in the decision space. 

We propose in this paper an interval B&B algorithm that inte- 

grates constraint propagation through the use of dominance con- 

tractors . These pruning techniques extend the ideas for multiob- 

jective combinatorial optimization presented in Gavanelli (2002) , 

Hartert and Schaus (2014) to nonlinear biobjective continuous opti- 

mization. This algorithm generalizes the B&B from Ruetsch (2005) , 

Fernández and Tóth (2009) in which a regular decomposition 

of the decision space is performed, similar to how it is usually 

done in the single-objective case. It differs from inverse meth- 

ods ( Barichard & Hao, 2003; Kubica & Wo ́zniak, 2013 ) in which a 

decomposition of the objective space masters a decomposition in 

the decision space. 

The paper is organized as follows. Sections 2 and 3 introduce 

the necessary background on nonlinear biobjective optimization 

and, respectively, on interval analysis and constraint propagation. 

Our B&B algorithm with dominance contractors is presented 

in Section 4 . Some experiments validating our proposal are 

http://dx.doi.org/10.1016/j.ejor.2016.05.045 
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discussed in Section 5 . Eventually, the paper is concluded in 

Section 6 . 

2. Nonlinear multiobjective optimization problems 

In this section we introduce the terminology and notions in use 

in multiobjective optimization. Though we consider only biobjec- 

tive problems in this paper, all the definitions given here apply in 

the general case and are thus expressed for an arbitrary number m 

of objectives. 

Nonlinear MultiObjective Optimization (NLMOO) consists in op- 

timizing several nonlinear conflicting objectives under nonlinear 

constraints. Such problems arise in many applications, such as en- 

gineering design, the need for a compromise being inherent to the 

decision process (see, e.g., Ehrgott, 2005; Miettinen, 1999 ). A NL- 

MOO problem can be written as follows: [ 

min f (x ) 
s.t. g(x ) ≤ 0 

h (x ) = 0 

] 

(1) 

with x ∈ R 

n the decision variables, f : R 

n → R 

m the objective func- 

tions, g : R 

n → R 

p the inequality constraints and h : R 

n → R 

q the 

equality constraints. The feasible region X is the set of decision 

vectors that satisfy all the constraints, i.e., X := { x ∈ R 

n : g(x ) ≤
0 , h (x ) = 0 } . Its image Y = f (X ) in the objective space is called the 

feasible objective region. In this paper, we consider objective and 

constraints that are continuously differentiable 1 . 

Because the objective functions are conflicting, all feasible ob- 

jective vectors cannot be compared. Still, if one such vector y ∈ Y
is better according to all the objective functions than another one 

y ′ ∈ Y, y is obviously more desirable than y ′ . This is formalized by 

the notion of dominance. 

Definition 1 (Dominance relations) . Let y and y ′ be two vectors in 

R 

m . The following notations are used: 

(i) y < y ′ ≡ y i < y ′ 
i 

∀ i = 1 , . . . , m ( y strictly dominates y ′ ) 
(ii) y � y ′ ≡ y i ≤ y ′ 

i 
∀ i = 1 , . . . , m, and y 	 = y ′ ( y dominates 

y ′ ) 
(iii) y ≤ y ′ ≡ y i ≤ y ′ 

i 
∀ i = 1 , . . . , m ( y weakly dominates y ′ ) 

In a posteriori decision making (i.e., without preferences induc- 

ing an aggregation of the objectives), solving problem (1) requires 

computing its set of Pareto optimal solutions, i.e., optimal trade- 

offs between the objectives. 

Definition 2 (Nondominance, Pareto optimality) . Consider a feasi- 

ble objective vector y ∈ Y . It is a nondominated (resp. weakly non- 

dominated ) vector of Y if there is no other y ′ ∈ Y such that y ′ �

y (resp. y ′ < y ). The set of nondominated (resp. weakly nondomi- 

nated) vectors is denoted Y 

∗ (resp. Y 

∗
W 

). 

A feasible solution x ∈ X is Pareto optimal (resp. weakly Pareto 

optimal ) if f ( x ) is nondominated (resp. weakly nondominated). The 

set of Pareto optimal (resp. weakly Pareto optimal) solutions is de- 

noted by X 

∗ (resp. X 

∗
W 

). 

As the objectives and constraints are nonlinear (non-convex), 

locally Pareto optimal solutions may exist. 

Definition 3 (Local optimality) . A solution x ∈ X is locally Pareto 

optimal if there exists δ > 0 such that x is Pareto optimal in the 

ball B(x, δ) ∩ X . 

In the convex case, all locally Pareto optimal solutions are 

globally Pareto optimal ( Miettinen, 1999 , Theorem 2.2.3) and can 

be found using local approaches, e.g., as a set of Pareto optimal 

1 Though constraint propagation could apply to evaluable only (blackbox) func- 

tions, its effectiveness is reduced in this case. 

solutions with images well spread upon the nondominated set. 

Oppositely, the non-convex case requires global search methods 

like evolutionary algorithms ( Coello, Lamont, & Van Veldhuizen, 

2006 ), swarm algorithms ( Reyes-Sierra & Coello, 2006 ), or interval 

B&B ( Fernández & Tóth, 2009; Kubica & Wo ́zniak, 2013; Ruetsch, 

2005 ). 

Computing all the globally Pareto optimal solutions via inter- 

val B&B requires bounding the subproblems issued from the sub- 

division of the search space. Contrarily to the single-objective case, 

bounding in multiobjective optimization is not straightforward: the 

bounds must enclose a whole set of nondominated vectors 2 . Usu- 

ally, the ideal y I and nadir y N (or anti-ideal y A ) points are used to 

bound, respectively below and above, the nondominated set Y 

∗: 

y I 
i 
= min x ∈X f i (x ) = min y ∈Y y i , i = 1 , . . . , m (2) 

y N 
i 

= max x ∈X ∗ f i (x ) = max y ∈Y ∗ y i , i = 1 , . . . , m (3) 

y A 
i 

= max x ∈X f i (x ) = max y ∈Y y i , i = 1 , . . . , m (4) 

As seen on Fig. 1 , the ideal and nadir bound the nondominated 

set Y 

∗: all nondominated points are dominated by the ideal and 

dominate the nadir, while all feasible objective points dominate 

the anti-ideal. Those particular points can be “easily” computed 

in the biobjective case 3 provided solutions of single-objective ver- 

sions of Problem (1) are known (or can be efficiently obtained). 

On the other hand, as they are single points, they do not provide 

good bounds, capturing only poorly the shape of the nondominated 

set. In order to obtain a more accurate bounding, dominance-free 

bounding sets have been introduced in Ehrgott and Gandibleux 

(2007) . 

Definition 4 (Dominance-free set) . A set E of vectors in R 

m is 

dominance-free if there is no y , y ′ ∈ E such that y dominates y ′ . 

Intuitively, a dominance free set can serve as a lower (resp. up- 

per) bound if it is “below” (resp. “above”) the set of Pareto opti- 

mal solutions to the problem. A formal definition follows. The right 

hand side of Fig. 1 depicts one lower and one upper bound set. 

Definition 5 (Bound sets) . Consider Problem (1) and let Y L ⊂ R 

m 

be a dominance-free set. This set is a lower bound set of Y 

∗ if it 

satisfies: 

Y 

∗ ⊆ { y : ∃ y ′ ∈ Y L , y ≥ y ′ } 
Similarly, let Y U ⊂ R 

m be a dominance-free set. This set is an 

upper bound set of Y 

∗ if it satisfies: 

Y 

∗ ⊆ R 

m \{ y : ∃ y ′ ∈ Y U , y > y ′ } 
Given this definition, any dominance-free set of feasible objec- 

tive vectors form a global upper bound set of Problem (1) , e.g., the 

black points in Fig. 1 . Note also that bound sets can be used to 

locally bound the Pareto optimal solutions in sub-regions of the 

search space. 

3. Interval analysis 

Interval analysis (IA) is a modern branch of numerical analysis 

born in the 1960’s ( Moore, 1966 ). It replaces computations with 

real numbers by computations with intervals of real numbers, pro- 

viding a framework for handling uncertainties and verified compu- 

tations. It is a powerful tool for dealing reliably with any problems 

implying real-valued variables such as numerical constraint satis- 

faction and nonlinear optimization ( Jaulin, Kieffer, Didrit, & Walter, 

2001; Kearfott, 1996a,b; Neumaier, 1991 ). 

2 Assuming this set is actually bounded. 
3 Weakly nondominated points increase the difficulty of computing y N . 
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