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a b s t r a c t 

The paper analyzes the influence, exerted by the mutual relations of deadline intervals on behavior of the 

optimal solution values for the random Sequencing Jobs with Deadlines (SJD) problems. An asymptotically 

sub-optimal algorithm is proposed. It is assumed that the problem coefficients are realizations of inde- 

pendent uniformly distributed random variables and deadlines are deterministic. The results, presented 

in the paper, significantly extend knowledge on behavior of the optimal solutions to the SJD problem in 

the asymptotical case. 
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1. Introduction 

The Sequencing Jobs with Deadlines problem (SJD) consists 

in maximizing the weighted number of jobs processed before 

their deadlines. Deadlines may be considered as special cases 

of due windows (due intervals), see ( Janiak, Janiak, Krysiak, & 

Kwiatkowski, 2015 ). Each job j ( j = 1 , . . . , n ) is to be processed on a 

single machine. It requires a processing time t j and has a deadline 

d j ( n ). Deadlines are assumed to be the functions of n in order to 

allow for the asymptotical analysis of SJD, when n → ∞ . If the job 

is completed before its deadline, a profit p j is earned. The objec- 

tive is to maximize the total profit, which could be considered as 

equivalent to minimizing the total cost or minimizing the weighted 

sum of late jobs. 

From the point of view of the deterministic scheduling prob- 

lems theory, the SJD problem belongs to the class of the single 

machine scheduling (SMS) problems. More precisely, it is consid- 

ered as a scheduling problem with optimization criteria involving 

due dates, classified, according to Graham notation, as 1 | | �w j U j , 

see ( Bła ̇zewicz, Ecker, Pesch, Schmidt, and Weglarz, 1996 , p. 106). 

There are many research papers that deal with SMS problems, 

both due to their own scientific value and as parts of more 

generalized and complex problems. The SJD problem often occurs 

as a sub-problem in various sequencing and scheduling problems. 

In Baptiste, Croce, Grosso, and T’kindt (2010) job sequencing 
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problems with due dates and deadlines were considered. Paper 

by Catanzaro, Gouveiac, and Labbé (2015) addressed the job se- 

quencing problems with tool switching. In Baptiste and Le-Pape 

(2005) scheduling problems with setup constraints were analyzed. 

Detienne (2014) considered scheduling problems with machine 

availability constraints. These ones are only few, out of many, 

problems where the SJD problem is included as the sub-problem. 

In many cases, the SJD problem may be used as relaxation of the 

more complex problems. 

It is assumed, with insignificant loss of generality, that jobs are 

indexed according to 

d 1 (n ) ≤ d 2 (n ) ≤ · · · ≤ d n (n ) . (1) 

Then, the SJD problem can be formulated as a binary (0–1) pro- 

graming problem (cf. Lawler & Moore, 1969 ): 

z OPT (n ) = max 

n ∑ 

j=1 

p j x j 

s.t. 

i ∑ 

j=1 

t j x j ≤ d i (n ) , i = 1 , . . . , n 

where x j = 0 or 1 , j = 1 , . . . , n (2) 

where x j = 1 only if job j is completed before its deadline. Jobs 

on time should be processed in the order conform to (1) , while 

completion of the late jobs is of no importance, since no profit is 

earned. If all p j = 1 , j = 1 , . . . , n, then the optimization goal is to 

maximize the number of jobs performed within the deadlines or, 

equivalently, to minimize the number of tardy jobs. Without loss 
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of generality we also assume that 

0 < t j ≤ d j (n ) and p j > 0 , j = 1 , . . . , n. 

SJD is well known to be an NP-hard problem, see ( Garey & 

Johnson, 1979 ), but it can be solved in a pseudopolynomial time 

by a dynamical programing method of Sahni (1976) . In the litera- 

ture, many algorithms have been proposed to solve the sequencing 

or scheduling jobs on a single machine. Many of the proposed 

solution techniques are based on (mixed) integer linear program- 

ing problem formulations, cf. Baptiste et al. (2010) , Catanzaro 

et al. (2015) and Detienne (2014) . Another general technique 

which could be used is Branch and Bound method, see Baptiste 

and Le-Pape (2005) . There were also attempts to use genetic 

algorithms, see Sevaux and Dauzère-Pérès (2003) or the neural 

network approach, cf. El-Bouri, Balakrishnan, and Popplewell 

(20 0 0) . In the paper by Levner and Elalouf (2014) , an improved 

version of the polynomial-time approximation algorithm to solve 

the SJD problem was presented. The above list of references has 

illustrative purpose and it is far from being exhaustive. 

In the literature, a certain simplified version of the SJD prob- 

lem was considered. In this case all jobs have identical processing 

times, i.e. t i = c, c > 0, i = 1 , . . . , n where c is some constant. For 

this version of the SJD problem many efficient greedy type algo- 

rithms were proposed, cf. Puntambekar (2009) . Moreover, greedy 

type algorithms are often used in this context in the teaching pro- 

cess at the universities, cf. Kocur (2010) . 

It can be easily observed that SJD is a special case of the 

well known binary (0–1) multi-constraint knapsack problem, cf. 

Kellerer, Pferschy, and Pisinger (2004) , according to the following 

formulation: 

z OPT (n ) = max 

n ∑ 

i =1 

c i x i s.t. 

n ∑ 

i =1 

a ji x i ≤ b j (n ) , x i ∈ { 0 , 1 } , 

i, j = 1 , . . . , n (3) 

where, in (3) , c j = p j , a i j = t j , 1 ≤ i ≤ j, a i j = 0 , j < i ≤ n, 

b j (n ) = d j (n ) , j = 1 , . . . , n . When all constraints, but last, in 

(3) are dropped, then SJD problem is reduced to the classical 

(single constraint) knapsack problem: 

z OPT (n ) = max 

n ∑ 

i =1 

p i x i s.t. 

n ∑ 

i =1 

t i x i ≤ d n (n ) , x i ∈ { 0 , 1 } , 

i = 1 , . . . , n. (4) 

It is well known that multi-constraint knapsack problem is NP hard 

in the strong sense, while both SJD and single-constraint knapsack 

problems are NP hard but not in the strong sense, cf. Garey and 

Johnson (1979) . 

There are various approaches to deal with uncer- 

tainty, e.g. defined as randomness of the problem data 

(coefficients), in the case of job sequencing or schedul- 

ing problems, cf. Xia, Chen, and Yue (2008) . In the pa- 

per by Szkatuła (1998) asymptotic growth (as n → ∞ ) 

of the value of z OPT ( n ) for the class of random SJD problems 

was analyzed. The goal of the present paper is to investigate the 

influence of the intervals of deadlines on asymptotical behavior (as 

n → ∞ ) of the optimal solution values z OPT ( n ) in the case of ran- 

dom version of the SJD problem, where intervals of deadlines are 

defined by behavior of d 1 (n ) , d 2 (n ) − d 1 (n ) , . . . , d n (n ) − d n −1 (n ) , 

more precisely by their mutual relations. A simple heuristic algo- 

rithm for solving the SJD problems is proposed and it is proven 

that in the average case it is asymptotically sub-optimal. The 

obtained results are significantly extending the ones presented in 

the paper mentined above. 

The results achieved constitute a contribution to the field of 

scheduling problems as well as to the probabilistic analysis of 

the combinatorial optimization problems. These results could be 

also useful for constructing and testing approximate algorithms for 

solving SJD problems. 

The following notation is used throughout the paper: V n ≈ Y n , 

n → ∞ denotes: 

• Y n · (1 − o n (1)) ≤ V n ≤ Y n · (1 + o n (1)) if V n and Y n are se- 

quences of numbers; 
• lim n →∞ 

P { Y n · (1 − o n (1)) ≤ V n ≤ Y n · (1 + o n (1)) } = 1 if V n is a 

sequence of random variables and Y n is a sequence of num- 

bers or random variables, where o n (1) is function fulfilling: 

o n (1) ≥ 0 and lim n →∞ 

o n (1) = 0 . 

In Section 2 some useful duality estimations of (2) are 

presented. These estimations are exploited in Section 3 , 

which presents probabilistic analysis of the SJD problem. Both 

Sections 2 and 3 are partially based on the paper by Szkatuła 

(1998) . For further details the reader is kindly referred to this 

paper. Section 4 contains the main results of the paper, re- 

lated to the deadline intervals and the approximate algorithm. 

Section 5 discusses obtained results. 

2. Lagrange function and dual estimations 

Let us consider the Lagrange function of (2) : 

F n (x, �) = 

n ∑ 

j=1 

p j x j + 

n ∑ 

i =1 

λi ·
(

d i (n ) −
∑ i 

j=1 
t j x j 

)

= 

n ∑ 

i =1 

λi d i (n ) + 

n ∑ 

j=1 

(
p j − � j · t j 

)
· x j 

where x = { x 1 , . . . , x n } , � = { λ1 , . . . λn } , � j = 

∑ n 
i = j λi . Let for every 

�, λ j ≥ 0 , j = 1 , . . . , n 

ϕ n (�) = max 
x ∈{ 0 , 1 } n 

F n (x, �) = 

n ∑ 

i =1 

λi d i (n ) + 

n ∑ 

j=1 

(
p j −� j · t j 

)
· x j (� j ) 

= 

n ∑ 

j=1 

p j (� j ) + 

n ∑ 

i =1 

λi ·
(

d i (n ) −
∑ i 

j=1 
t j (� j ) 

)
where 

if p 
j 
− �

j 
t 

j 
> 0 then x j (� j ) = 1 ; p j (� j ) = p j ; t j (� j ) = t j ;

if p 
j 
− �

j 
t 

j 
≤ 0 then x j (� j ) = 0 ; p j (� j ) = 0 ; t j (� j ) = 0 . (5) 

Let us denote: 

z n (�) = 

n ∑ 

j=1 

p 
j 
(�

j 
) ; s i (�) = 

i ∑ 

j=1 

t j (� j ) ;

ˆ p (� j ) = 

{
p 

j 
(� j ) if s j (�) ≤ d j (n ) 

0 otherwise 
; ˆ z n (�) = 

n ∑ 

j=1 

ˆ p (� j ) ; 

D n (�) = 

n ∑ 

i =1 

λi · d i (n ) ; S n (�) = 

n ∑ 

i =1 

λi · s i (�) 

= 

n ∑ 

j=1 

� j · t j (� j ) ; ϕ n (�) = z n (�) + D n (�) − S n (�) . 

The problem dual to SJD (2) is then as follows: 

�∗
n = min 

�≥0 
ϕ n (�) . 

By the construction of z n (�) , ˆ z n (�) , S n (�) , D n (�) , ϕ n (�) and 

�∗
n (�) we have for any � ≥ 0: 

z n (�) ≥ S n (�) 

and 

ˆ z n (�) ≤ z OPT (n ) ≤ �∗
n 

≤ ϕ n (�) = z n (�) + D n (�) − S n (�) . (6) 
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