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a b s t r a c t 

Many networking-related settings can be modeled by Markov-modulated infinite-server systems. In such 

models, the customers’ arrival rates and service rates are modulated by a Markovian background process; 

additionally, there are infinitely many servers (and consequently the resulting model is often used as 

a proxy for the corresponding many-server model). The Markov-modulated infinite-server model hardly 

allows any explicit analysis, apart from results in terms of systems of (ordinary or partial) differential 

equations for the underlying probability generating functions, and recursions to obtain all moments. As a 

consequence, recent research efforts have pursued an asymptotic analysis in various limiting regimes, 

notably the central-limit regime (describing fluctuations around the average behavior) and the large- 

deviations regime (focusing on rare events). Many of these results use the property that the number 

of customers in the system obeys a Poisson distribution with a random parameter. The objective of this 

paper is to develop techniques to accurately approximate tail probabilities in the large-deviations regime. 

We consider the scaling in which the arrival rates are inflated by a factor N , and we are interested in the 

probability that the number of customers exceeds a given level Na . Where earlier contributions focused 

on so-called logarithmic asymptotics of this exceedance probability (which are inherently imprecise), the 

present paper improves upon those results in that exact asymptotics are established. These are found in 

two steps: first the distribution of the random parameter of the Poisson distribution is characterized, 

and then this knowledge is used to identify the exact asymptotics. The paper is concluded by a set of 

numerical experiments, in which the accuracy of the asymptotic results is assessed. 

© 2016 Published by Elsevier B.V. 

1. Introduction, notation, and preliminaries 

Consider an infinite-server queue modulated by a finite-state 

irreducible continuous-time Markov chain J : when the so-called 

background process J is in state i ∈ { 1 , . . . , d} , jobs arrive accord- 

ing to a Poisson process with rate λi , while the departure rate is 

μi . These Markov-modulated infinite-server queues have attracted 

some attention during the past decades; see e.g. the early con- 
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tributions of D’Auria (2008) , Keilson and Servi (1993) , O’Cinneide 

and Purdue (1986) and later Fralix and Adan (2009) . Importantly, 

considerably fewer results are available for this model than for the 

corresponding single -server queue. This is primarily due to the fact 

that, despite the system’s simple structure, the Markov-modulated 

infinite-server queue hardly allows any explicit analysis: whereas 

the Markov-modulated single-server queue has a matrix-geometric 

stationary distribution, no such result applies to its infinite-server 

counterpart. The results obtained so far are implicit, in that they 

are in terms of partial differential equations characterizing the 

probability generating functions related to the system’s transient 

behavior, and recursions for the corresponding moments (where in 

each step of the recursion a system of non-homogeneous ordinary 

differential equations needs to be solved). 

http://dx.doi.org/10.1016/j.ejor.2016.10.050 
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The Markov-modulated infinite-server queue can be applied in 

various domains, ranging from biology to the performance anal- 

ysis of particular communication networks. In the present paper 

the focus lies on the latter application, where the model with an 

infinite number of servers typically serves as a proxy for its coun- 

terpart with a large but finite number of servers. The Markov mod- 

ulation of the arrival rates and service rates facilitates the model- 

ing of some sort of ‘burstiness’; although the concept of Markov 

modulation has been around for a few decades, it still spurs a con- 

siderable amount of research effort ( Horváth, 2015; O’Reilly, 2014 ). 

For instance, the model can be used to describe the fluctuations in 

the users’ activity level (where each user alternates between trans- 

mitting data or being silent). Also, e.g. in a wireless setting, the 

modulation of the service rate can represent channel conditions 

that vary over time. In the context of communication networks, 

a particularly relevant feature concerns rare events . More specifi- 

cally, a high activity level corresponds to congestion, and therefore 

the system should be designed such that such high activity levels 

occur relatively infrequently. 

Given that, as argued above, explicit analysis is hardly possible, 

recent research efforts have focused on the exploration of various 

limiting regimes. In the first place, significant progress has been 

made in terms of the derivation of (functional) central limit the- 

orems under specific parameter scalings. When inflating the ar- 

rival rates by a factor N , and speeding up the background process 

by a factor N 

α (for some α > 0), in e.g. ( Anderson, Blom, Mand- 

jes, Thorsdottir, and De Turck, 2014; Blom, De Turck, and Mand- 

jes, 2015; Blom, De Turck, and Mandjes, 2016 ) it has been proven 

that the (transient as well as stationary) number of jobs present in 

the system is, after centering and normalizing, asymptotically Nor- 

mally distributed. An interesting dichotomy was identified, in that 

the regimes α < 1 and α > 1 lead to qualitatively different asymp- 

totics. 

Also the large-deviations regime has been explored, resulting in 

so-called logarithmic asymptotics ( Blom, Kella, Mandjes, & De Turck, 

2014; Blom & Mandjes, 2013; Blom, De Turck, & Mandjes, 2013 ). 

In these papers the arrival rates are scaled by a factor N and the 

background process is either left unchanged or accelerated by a 

factor N 

1+ ε , ε > 0 . With M 

( N ) ( t ) the number of jobs present at time 

t in the resulting system, these papers determine the limit 

lim 

N→∞ 

1 

N 

log p (N) 
t (a ) =: −I(a ) , with p (N) 

t (a ) := P 

(
M 

(N) (t) ≥ Na 
)
, 

(1) 

as well as the corresponding limit for M 

( N ) ( t )’s steady-state coun- 

terpart M 

( N ) . It is observed that these asymptotics are inherently 

imprecise, as they essentially just entail that 

p (N) 
t (a ) = e −NI(a ) �(N) , 

for some unknown subexponential function �( N ); we only know 

that �( N ) has the property that, as N → ∞ , 

1 

N 

log �(N) → 0 . (2) 

Observe that (2) still leaves a substantial amount of freedom: �( N ) 

could be for instance a constant, but also any polynomial function 

of N , or even ‘big functions’ of the type 10 6 · exp ( N 

0.99 ). We con- 

clude that logarithmic asymptotics of the type (1) typically pro- 

vide valuable insight into the system’s rare-event behavior, but 

that they may be too inaccurate to be used for performance eval- 

uation purposes. This shows that there is a clear need for more 

precise asymptotic results. 

The main contribution of the present paper is to improve the 

logarithmic asymptotics (1) to so-called exact asymptotics: we 

identify an explicit function ζ ( ·) such that, as N → ∞ , 

p (N) 
t (a ) 

ζ (N) 
→ 1 . 

As it turns out, this ζ ( N ) is the product of the exponential term 

identified above ( e −NI(a ) ), a polynomial term (which is typically 

of the form N 

−C , for some C > 0), and a constant. The proof of 

this property consists of two steps, and relies on the property that 

M 

( N ) ( t ) obeys a Poisson distribution with random parameter (as 

was observed in e.g. Blom et al., 2014; D’Auria, 2008 ). 

◦ In the first step a system of partial differential equations is set 

up for the distribution of this Poisson parameter. 

◦ In the second step, this is combined with (a uniform version) 

of the classical result by Bahadur and Rao (1960) , Höglund 

(1979) on the exact tail asymptotics of sample means of i.i.d. 

random variables, so as to obtain the exact asymptotics of the 

tail probability of our interest. 

Model and notation. As mentioned above, λi is the (Poissonian) 

arrival rate when the background process is in state i . We let 

Q = (q i j ) 
d 
i, j=1 

be the ( d × d ) transition rate matrix of the (irreducible) back- 

ground process J , with πππ denoting the corresponding invariant 

probability measure (which is a d -dimensional vector πππ ). The en- 

tries of Q are non-negative, except for those on the diagonal; the 

row-sums are assumed to be 0, where we define q i := −q ii ≥ 0 . 

Concerning the departure process, two models are considered. 

In the first, referred to as Model i , each job present is experienc- 

ing a departure rate μi when J is in state i ; as a consequence, 

this hazard rate may change during the job’s sojourn time (that 

is, when the background process makes a transition). In the sec- 

ond, Model ii , the crucial difference is that the job’s sojourn time 

is sampled upon arrival: when the background process is then in 

state i , it has an exponential distribution with mean 1/ μi . The evi- 

dent independence assumptions are imposed. 

Preliminaries. In Models i and ii , we have that M 

( N ) ( t ) has a 

mixed Poisson distribution, i.e., a Poisson distribution with random 

parameter ( Blom et al., 2014; D’Auria, 2008 ). More specifically, 

with P ( b ) denoting a Poisson random variable with mean b > 0, 

our target probability p (N) 
t (a ) equals the probability P (P (Nφt (J)) ≥

Na ) in Model i and P (P (Nψ t (J)) ≥ Na ) in Model ii , where the func- 

tionals φt ( J ) and ψ t ( J ) of the path J ≡ { J ( s ): s ∈ [0, t ]} are given by, 

respectively, 

φt (J) := 

∫ t 

0 

λJ(s ) e 
− ∫ t 

s μJ(r) d r d s and ψ t (J) := 

∫ t 

0 

λJ(s ) e 
−(t−s ) μJ(s ) d s. 

An intuitive explanation for this property is the following. In Model 

ii the probability of a job that has arrived at time s is still present 

at time t ∈ ( s , ∞ ) is 

e −(t−s ) μJ(s ) , 

as μJ ( s ) is its hazard rate during its entire lifetime. In Model i this 

hazard rate may change over time, in the sense that when the 

background process is in state i it is μi ; therefore, the probability 

of a job that has arrived at time s is still present at t is 

e −
∫ t 

s μJ(r) d r . 

In an earlier paper ( Blom et al., 2014 ) we have developed a tech- 

nique to determine for Model i numbers a (−, i ) 
t and a (+ , i ) t (such that 

0 ≤ a (−, i ) 
t ≤ a (+ , i ) t ) being the smallest, resp. largest numbers that 

φt ( J ) can attain. The analogous result for ψ t ( J ) (featuring in Model 

ii ) has been presented in Blom and Mandjes (2013) , resulting in 

numbers a (−, ii ) 
t and a (+ , ii ) t . 
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