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a b s t r a c t 

Post-optimal analysis is the task of understanding the behavior of the solution of a problem due to 

changes in the data. Frequently, post-optimal analysis is as important as obtaining the optimal solution 

itself. Post-optimal analysis for linear programming problems is well established and widely used. How- 

ever, for integer programming problems the task is much more computationally demanding, and various 

approaches based on branch-and-bound or cutting planes have been presented. In the present paper, 

we study how much coefficients in the original problem can vary without changing the optimal solu- 

tion vector, the so-called tolerance analysis. We show how to perform exact tolerance analysis for the 

0–1 knapsack problem with integer coefficients in amortized time O ( c log n ) for each item, where n is 

the number of items, and c is the capacity of the knapsack. Amortized running times report the time 

used for each item, when calculating tolerance limits of all items. Exact tolerance limits are the widest 

possible intervals, while approximate tolerance limits may be suboptimal. We show how various upper 

bounds can be used to determine approximate tolerance limits in time O (log n ) or O (1) per item using the 

Dantzig bound and Dembo–Hammer bound, respectively. The running times and quality of the tolerance 

limits of all exact and approximate algorithms are experimentally compared, showing that all tolerance 

limits can be found in less than a second. The approximate bounds are of good quality for large-sized 

instances, while it is worth using the exact approach for smaller instances. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

In many combinatorial optimization problems the data are not 

given with certainty, and hence a natural question is how large the 

errors on the coefficients can be without distorting the sought op- 

timal solution. Combinatorial problems, unlike linear programming 

problems, behave in an unstable manner under small changes in 

the initial data, making tolerance analysis a challenging but impor- 

tant problem. 

In this paper, we distinguish between sensitivity analysis and 

tolerance analysis. Sensitivity analysis in linear programming stud- 

ies in which range the coefficients can vary without changing the 

current basic solution. Since we do not have basic solutions in 

combinatorial problems, tolerance analysis studies the robustness 

of an optimal solution vector to perturbations in the problem co- 

efficients. Tolerance analysis is also known as stability analysis in 

the literature. 

Greenberg (1998) gives a quite recent bibliography for post- 

optimal analysis in combinatorial optimization, and mentions a 
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number of papers on knapsack problems ( Burkard & Pferschy, 

1995; Hansen & Ryan, 1996; Kozeratskaya, Lebedeva, & Sergienko, 

1983; Seelander, 1980 ). Klein and Holm (1979) presented a gen- 

eral cutting-plane framework for post-optimal analysis of combi- 

natorial problems and gave sufficient conditions for preserving the 

same optimal solution when the right-hand side or an objective 

coefficient is altered. 

The 0–1 knapsack problem consists of packing a subset of n 

items, each item i having a profit p i and a weight w i , into a knap- 

sack of capacity c such that the overall profit is maximized. See, 

e.g., Kellerer, Pferschy, and Pisinger (2004) for a thorough intro- 

duction. Tolerance analysis for the knapsack problem consists of 

determining the intervals αp k 
≤ p k ≤ βp k 

and αw k 
≤ w k ≤ βw k 

for 

which the profit or the weight of a given item k can be perturbed 

such that a given optimal solution remains optimal for the prob- 

lem. Exact tolerance limits are the widest possible intervals, while 

approximate tolerance limits may be suboptimal (i.e., a subset of 

the exact tolerance limits). Notice that at any time we only alter a 

single item k . 

Hifi, Mhalla, and Sadfi (2005) proved several results that char- 

acterize the tolerance limits. Using these results they proposed 

two algorithms, one to compute the profit tolerances and one to 

compute the weight tolerances. The profit algorithm, having a run- 
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Table 1 

Summary of the results presented by Hifi et al. (2005) and the present paper. Notice that the quality of the approx bounds is different. The 

approx LP-bound generally gives the most correct tolerance limits of the three approx methods. 

Perturbation Current Limit Hifi et al. (2005) Our results 

solution x ∗ Exact Approx Exact worstcase Exact amortized Approx LP-bound Approx DH-bound 

Profit p k x ∗
k 

= 0 αp k O (1) O (1) O (1) 

βp k O ( n ) O ( nc ) O ( c log n ) O (log n ) O (1) 

x ∗
k 

= 1 αp k O ( n ) O ( nc ) O ( c log n ) O (log n ) O (1) 

βp k O (1) O (1) O (1) 

Weight w k x ∗
k 

= 0 αw k O ( n 2 c ) O ( nc ) O ( c log n ) O (log n ) O (1) 

βw k O (1) O (1) O (1) 

x ∗
k 

= 1 αw k O ( n 2 c ) O ( nc ) O ( c log n ) O (log n ) O (1) 

βw k O ( n ) O ( n ) O (1) 

ning time of O ( n 2 ), applies upper bounds to derive exact and ap- 

proximate tolerance intervals. The weight algorithm, having a run- 

ning time of O ( n 2 c ), applies dynamic programming to derive exact 

and approximate tolerance intervals. 

The main objective of this paper is to present an exact algo- 

rithm for the tolerance analysis of the 0–1 knapsack problem based 

on dynamic programming. The algorithm can determine the exact 

tolerance interval for the profit or weight of an arbitrary item. 

This approach resembles the approach of Hifi et al. (2005) in 

the way that both approaches take advantage of the dynamic pro- 

gramming solution, but differs in the fact that some of the results 

of Hifi et al. (2005) are approximate while this new method is exact 

for all results. In addition the new algorithm has a better compu- 

tation time, O ( nc log n ). 

Table 1 summarizes the results of Hifi et al. (2005) and of the 

present paper, reporting the time needed to compute a tolerance 

limit for a specific item k . The first two rows concern the perturba- 

tion of profit p k while the next two rows concern the perturbation 

of weight w k . Columns 4, 6 and 7 report running times for finding 

Exact tolerance limits, while columns 5, 8 and 9 report running 

times for finding Approximate tolerance limits. Depending on the 

value of the current optimal solution x ∗
k 

the upper and lower lim- 

its can be calculated in a variety of ways. All running times are for 

a given item k , and it is assumed that the current optimal solution 

is known in advance, including the residual capacity of the solu- 

tion. Worstcase denotes worst-case running time, while Amortized 

denotes amortized running time. Amortized running times report 

the time used for each item, when calculating tolerance limits of 

all items. Two different approximate tolerance limits are presented 

in this paper using either the Dantzig upper bound ( Approx LP- 

bound ) or Dembo and Hammer (1980) upper bound ( Approx DH- 

bound ). 

Several related problems have been studied recently in the lit- 

erature: Belgacem and Hifi (2008) and Hifi and Mhalla (2010) con- 

sider the perturbation of a subset of items in a binary knap- 

sack problem. Monaci, Pferschy, and Serafini (2013) consider the 

related robust knapsack problem. Archetti, Bertazzi, and Sper- 

anza (2010) consider the reoptimization of a knapsack problem 

when new items are added to the problem. Various heuristics 

and approximation algorithms are presented. Monaci and Pferschy 

(2013) consider a variant of the knapsack problem where the ex- 

act weight of each item is not known in advance but belongs to a 

given interval. The worsening of the optimal solution is analyzed. 

Plateau and Plateau (2012) consider how a knapsack problem can 

be reoptimized given that the data has been slightly modified. 

The paper is organized as follows: Section 2 describes the 0–1 

knapsack problem and its “dual” denoted the weight knapsack prob- 

lem , which is advantageous when determining weight tolerance 

limits. Dynamic programming methods and upper/lower bounds 

are presented for both problems. Section 3 formally defines the 

tolerance analysis of a 0–1 knapsack problem and presents some 

special cases for which the profit or weight tolerance limits can be 

identified. Section 4 presents the exact profit and weight tolerance 

limits, and describes an O ( nc ) algorithm per item (or O ( n 2 c ) in to- 

tal) which can be used to calculate the limits. Section 5 shows how 

the amortized time complexity of the algorithm can be improved 

to O ( c log n ) per item (or O ( nc log n ) in total) by making use of over- 

lapping subproblems in the dynamic programming. Moreover, we 

show how to calculate the tolerance limits by solving a single 0–1 

knapsack problem. This makes it possible to use any state-of-the- 

art algorithm for solving the knapsack problem, and introduces the 

opportunity to find approximate tolerance limits by use of various 

upper bounds for the 0–1 knapsack problem. 

2. The 0–1 knapsack problem 

The 0–1 knapsack problem consists of packing a subset of n 

items into a knapsack of capacity c . Each item i has profit p i and 

weight w i and the objective is to maximize the profit of the items 

in the knapsack without exceeding the capacity c . Using the binary 

variable x i to indicate whether item i is included in the knapsack, 

we get the formulation: 

( KP ) maximize 

n ∑ 

i =1 

p i x i 

subject to 

n ∑ 

i =1 

w i x i ≤ c 

x i ∈ { 0 , 1 } , i = 1 , 2 , . . . , n (1) 

Without loss of generality we assume that the profits and the 

weights are positive integers (see Kellerer et al., 2004 for transfor- 

mations to this form). Also, we assume that 
∑ n 

i =1 w i > c. An opti- 

mal solution vector to KP is denoted x ∗ and the optimal solution 

value z ∗. A knapsack problem with capacity c is denoted KP[ c ], and 

we use the terminology KP := KP[ c ] whenever the capacity is the 

original capacity. KP[ c ] �{ k } denotes the knapsack subproblem KP[ c ] 

where item k is excluded. z ( K ) is the optimal objective function of 

knapsack instance K . KP( x ′ ) is the instance with variables x fixed at 

x ′ , hence z( KP (x ′ )) = 

∑ n 
i =1 p i x 

′ 
i 
. 

The LP-relaxed (or fractional) knapsack problem, where 0 ≤ x i 
≤ 1 for i = 1 , 2 , . . . , n can be solved to optimality by a greedy al- 

gorithm, in which the items are sorted according to nonincreasing 

profit-to-weight ratio p i /w i and the knapsack is packed with items 

1 , 2 , . . . until the first item s (the split item ) which does not fit into 

the knapsack. The optimal solution value z ∗
LP 

is then 

z ∗LP = 

s −1 ∑ 

i =1 

p i + 

( 

c −
s −1 ∑ 

i =1 

w i 

) 

p s 

w s 
. (2) 

Knowing that all profits are integers, we may round down the so- 

lution value to � z ∗
LP 

� getting the Dantzig upper bound . 
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