
Applied Soft Computing 13 (2013) 2947–2959

Contents lists available at SciVerse ScienceDirect

Applied Soft Computing

j ourna l ho mepage: www.elsev ier .com/ locate /asoc

Distributed memetic differential evolution with the synergy of Lamarckian
and Baldwinian learning

Chunmei Zhanga,b, Jie Chena,c, Bin Xina,d,∗

a School of Automation, Beijing Institute of Technology, Beijing 100081, China
b School of Electronic Information Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China
c Key Laboratory of Complex System Intelligent Control and Decision, Ministry of Education, Beijing 100081, China
d Decision and Cognitive Sciences Research Centre, Manchester Business School, The University of Manchester, Manchester M15 6PB, UK

a r t i c l e i n f o

Article history:
Received 8 October 2011
Received in revised form 4 February 2012
Accepted 28 February 2012
Available online 16 March 2012

Keywords:
Distributed differential evolution
Memetic algorithm
Lamarckian learning
Baldwinian learning
Hooke–Jeeves algorithm

a b s t r a c t

As a population-based optimizer, the differential evolution (DE) algorithm has a very good reputation for
its competence in global search and numerical robustness. In view of the fact that each member of the pop-
ulation is evaluated individually, DE can be easily parallelized in a distributed way. This paper proposes
a novel distributed memetic differential evolution algorithm which integrates Lamarckian learning and
Baldwinian learning. In the proposed algorithm, the whole population is divided into several subpopula-
tions according to the von Neumann topology. In order to achieve a better tradeoff between exploration
and exploitation, the differential evolution as an evolutionary frame is assisted by the Hooke–Jeeves algo-
rithm which has powerful local search ability. We incorporate the Lamarckian learning and Baldwinian
learning by analyzing their characteristics in the process of migration among subpopulations as well as in
the hybridization of DE and Hooke–Jeeves local search. The proposed algorithm was run on a set of clas-
sic benchmark functions and compared with several state-of-the-art distributed DE schemes. Numerical
results show that the proposed algorithm has excellent performance in terms of solution quality and
convergence speed for all test problems given in this study.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

The differential evolution (DE) is a stochastic, population-based
global search and optimization method [1]. It uses the difference of
solutions to create new candidate solutions and one-to-one spawn-
ing competition scheme to select new individuals greedily. These
attractive characteristics make DE retain the knowledge of good
solutions in the current population. DE, just like the particle swarm
optimization (PSO) and genetic algorithm (GA) which have been
implemented to various domains [2,3], has been proven to have a
good performance on many real-world problems [4]. DE is good at
exploring the search space and locating the region of global optima,
but it is slow at fine-tuning the solution [5]. Some modifications on
the basic DE can improve its performance, which can be grouped
into two categories. One depends on the modifications of DE itself
including its parameters, operator, and population structure [6,7];
and the other focuses on hybridizing DE with different optimiz-

∗ Corresponding author at: School of Automation, Beijing Institute of Technology,
Beijing 100081, China. Tel.: +86 1068912463; fax: +861068918233.

E-mail addresses: zcm10606@163.com (C. Zhang), chenjie@bit.edu.cn (J. Chen),
brucebin@bit.edu.cn (B. Xin).

ers such as additional local searchers and other population-based
metaheuristics (e.g. particle swarm optimizer) [8–10].

In the case of modifying the population structure of DE, a popular
way is dividing the whole population into multiple subpopulations
which evolve independently and exchange information mutually.
An important motivation behind the multiple-population strat-
egy is to maintain population diversity and achieve the parallel
search of the solution space. DE can be easily parallelized due to
the fact that each member of the population is evaluated individ-
ually. Tasoulis et al. [11] explored how differential evolution can
be parallelized by using a unidirectional ring topology and pro-
posed an algorithm, namely parallel differential evolution (PDE),
to improve both the speed and the performance of the method.
Besides, a lot of research investigated the migration policy of par-
allel differential evolution, including migration schemes, migration
frequencies, the number and size of subpopulations, and so on.
Specially, for solving the learning issue in fuzzy neural inference
system, Singh et al. [12] studied the parameterization of a parallel
distributed DE in detail and discussed the influence of different
interval and sizes of migration, as well as different number of
islands. Apolloni et al. [13] designed a modified version of the
PDE in a generic way, namely island based distributed differen-
tial evolution (IBDDE). A set of five parameters was integrated to
elaborate on the main principles of the migration. A distributed

1568-4946/$ – see front matter © 2012 Elsevier B.V. All rights reserved.
doi:10.1016/j.asoc.2012.02.028

dx.doi.org/10.1016/j.asoc.2012.02.028
http://www.sciencedirect.com/science/journal/15684946
www.elsevier.com/locate/asoc
mailto:zcm10606@163.com
mailto:chenjie@bit.edu.cn
mailto:brucebin@bit.edu.cn
dx.doi.org/10.1016/j.asoc.2012.02.028

2948 C. Zhang et al. / Applied Soft Computing 13 (2013) 2947–2959

version of the differential evolution (DDE) was coupled with affine
transformation and mutual information maximization to perform
the registration of remotely sensed images in [14]. This algorithm
differs from PDE and IBDDE by the topology it adopts. Instead
of a unidirectional ring, DDE uses a locally connected topology
named torus topology. Based on comparative experiments, Falco
et al. indicated that DDE is very promising to achieve better per-
formance. Additionally, Izzo et al. [15] presented a heterogeneous
asynchronous island model for DE. The results confirmed that
such a model could improve the reliability and speed of the algo-
rithm and find significantly better solutions. Recently, Matthieu
et al. [16] designed an adaptive mechanism for the scale factor in
distributed differential evolution schemes, called “F” adaptive con-
trol parallel differential evolution (FACPDE). The empirical results
in [14] showed that the employment of multiple scale factors
can greatly improve the performance of the distributed algo-
rithm.

In the context of search and optimization, it is worth noting
that the key design issue of evolutionary algorithms lies in the suc-
cessful promotion of tradeoff between exploration and exploitation
[17]. Krasnogor and Smith [18] pointed out that the population-
based intelligent methods combining local search methods, called
memetic algorithms (MAs) which were originally proposed by
Moscato and Norman for the traveling salesman problem [19],
can lead to a better tradeoff between exploration and exploitation
and thereby improved performance. Now, the term MA is widely
employed as a synergy of evolutionary or any population-based
approach with separate individual learning or local improvement
procedures for problem solving [20]. There are two mechanisms on
how learning influences evolution. One is the Lamarckian learning
(L-learning) in which the characteristics of phenotype and geno-
type acquired by an organism during its lifetime is transferred and
can be passed on to the organism’s offspring directly. Another is
the Baldwinian learning (B-learning), different from the L-learning
that the acquired genotype traits are not inherited to its offspring
directly, but adaptive learning can guide the course of evolution
indirectly in a way that learning alters the shape of search space
and thereby provides good evolutionary paths towards individu-
als. The experimental results of [20] show that the L-learning in
general has a higher performance than the B-learning, and most
MAs employ the L-learning mechanism to achieve the combina-
tion of global search and local search. At the same time, Nguyen
et al. [20] also pointed out that the L-learning cannot distinguish
individuals effectively, easily leading to stagnation. Though com-
paratively time-consuming, it is easier to obtain global optima by
the B-learning.

In view of above, this paper proposes a novel distributed
memetic differential evolution (abbr., DMDE) which integrates the
L-learning and the B-learning. In the proposed algorithm, the initial
population is distributed over multiple subpopulations accord-
ing to the von Neumann topology. All subpopulations interact
by migrating their respective best individual to neighboring sub-
populations and replacing the worst ones partly or entirely. In
the evolutionary loop, DE is in charge of global search and the
Hook–Jeeves algorithm assists DE to achieve local improvement.
In order to balance exploration and exploitation, we incorporate
the L-learning and the B-learning by analyzing their characteris-
tics of individual learning. Then we achieve the cooperation in two
aspects: one is the migration among subpopulations and the other
is the hybridization of DE and the Hook–Jeeves algorithm.

The presented algorithm was run on a set of benchmark
problems and compared with several distributed DE schemes.
Numerical results show that the proposed DMDE makes a good
tradeoff between exploration and exploitation and performs better
than three state-of-the-art distributed DE algorithms for tackling
both unimodal and multimodal problems.

The remainder of this paper is organized as follows. In Section
2, a basic DE algorithm is briefly introduced. Section 3 proposes the
new distributed DE—DMDE. Section 4 analyses the computational
complexity of the proposed scheme and presents the experimental
results on benchmark functions. This section gives computational
complexity and performance comparisons with several state-of-
the-art distributed DE schemes as well as a discussion of the
obtained results. Conclusion is summarized in Section 5.

2. Basic differential evolution

Differential evolution (DE) is a population-based metaheuristic.
DE/rand/1/bin is one of the classic and most successful DE variants
[21]. It generates new solution vectors by adding the weighted dif-
ference of two randomly selected population members to the third
member, and forms the final trial vector with binomial crossover.
In addition, DE employs a one-to-one spawning logic which allows
replacement of an individual only if the offspring has better fitness
value than its corresponding parent.

DE evolves NP D-dimensional individual vectors xi,g, i = 1, 2, . . .,
NP, where g denotes the current generation, and NP is the popula-
tion size. The initial population is randomly generated within the
whole search space. After initialization, DE performs in sequence
three vector operations: differential mutation, crossover and selec-
tion.

A number of variations to the classic DE have been developed.
Different DE strategies differ in the way that the base vector is
selected, the number of difference vectors used, and the way that
crossover points are determined. In order to characterize these
variations, a general notation is adopted, namely DE/x/y/z [21]. x
represents a string denoting the vector to be perturbed, y is the
number of difference vectors considered for perturbation of x, and
z is the type of crossover being used. A brief introduction on the
well-known DE variant DE/rand/1/bin is given in the following.

2.1. Differential mutation

For each target vector xi,g, {i = 1, 2, . . ., NP}, the corresponding
mutant vector v is generated as follows:

v = xr0,g + F · (xr1,g − xr2,g), r0, r1, r2 ∈ {1, 2, . . . , NP}. (1)

where xr0,g is a base vector and the indexes satisfy r0 /= r1 /= r2 /= i.
It is obvious that at least four individuals are needed to implement
the above mutation operation, implying that NP ≥ 4. The scaling
factor F lies within the range (0, 2), usually less than 1 [22].

2.2. Crossover

After mutation, the target vector (individual) is mixed with the
mutant vector, and the following crossover operation is used to
form the final trial vector:

ui,g,j =
{

vi,g,j, if rand(0, 1) ≤ CR or j = jrand

xi,g,j, otherwise
, (2)

where i = 1, 2, . . ., NP and j = 1, 2, . . ., D. CR ∈ (0, 1) is the crossover
rate that controls the probability of creating components for the
trial vector u from the mutant vector v. The index jrand is an integer
randomly chosen from the set {1, 2, . . ., NP}, ensuring that at least
one component of the trial vector is provided by the mutated vector.

Download English Version:

https://daneshyari.com/en/article/495979

Download Persian Version:

https://daneshyari.com/article/495979

Daneshyari.com

https://daneshyari.com/en/article/495979
https://daneshyari.com/article/495979
https://daneshyari.com

