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a b s t r a c t 

Chance constrained programing (CCP) is often encountered in real-world applications when there is un- 

certainty in the data and parameters. We consider in this paper a special case of CCP with finite discrete 

distributions. We propose a novel approach for solving CCP. The methodology is based on the connection 

between CCP and arrangement of hyperplanes. By involving cell enumeration methods for an arrange- 

ment of hyperplanes in discrete geometry, we develop a cell-and-bound algorithm to identify an exact 

solution to CCP, which is much more efficient than branch-and-bound algorithms especially in the worst 

case. Furthermore, based on the cell-and-bound algorithm, a new polynomial solvable subclass of CCP is 

discovered. We also find that the probabilistic version of the classical transportation problem is polyno- 

mially solvable when the number of customers is fixed. We report preliminary computational results to 

demonstrate the effectiveness of our algorithm. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

We consider in this paper the following individual chance- 

constrained program: 

(IC 

2 P) min f (x ) 

s . t . P (ξ T Bx ≥ ρ) ≥ 1 − α, (1) 

x ∈ O, 

where f ( x ) is a convex function of x , P (·) denotes the probability, 

ξ is a random vector taking values in � 

m , B is an m × d matrix, ρ
∈ R , α ∈ (0, 1) is a prescribed risk level which is given by the de- 

cision maker, typically near zero, e.g., α = 0 . 01 or α = 0 . 05 , and O
is a convex compact set. We will show in Section 2.2 that our cell- 

and-bound algorithm can be generalized parallel to the following 

chance-constrained program (CCP): 

(C 

2 P) min f (x ) 

s . t . P (�x ≥ ε) ≥ 1 − α, (2) 

x ∈ O, 

where � is an m × d random matrix and ε is a random vector 

taking values in � 

m . Constraint (2) is called a chance constraint . 
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Especially, when m = 1 , i.e., constraint (1) is called an individual 

chance constraint . Constraint (2) is also known as a joint probabilis- 

tic constraint where we require all constraints be satisfied simulta- 

neously, rather than having each row satisfied independently with 

different probabilities. It has been shown in Luedtke, Ahmed, and 

Nemhauser (2010) that problem (C 

2 P) is NP-hard even when the 

matrix � is deterministic. Thus, problem (C 

2 P) is NP-hard in gen- 

eral. When only the left-hand side of the probabilistic constraint 

is random, i.e., ε is deterministic and matrix � is random, problem 

(C 

2 P) reduces to chance-constrained problems with a random tech- 

nology matrix (CCRTM). Similarly, when only the right-hand side of 

the probabilistic constraint is random, i.e., ε is random and matrix 

� is deterministic, problem (C 

2 P) reduces to chance-constrained 

problems with random right-hand sides (CCRRH). 

Many problems in various areas can be formulated as (C 

2 P). 

Lejeune (2012) reviewed a series of applications, for example, 

portfolio selection of Gaivoronski and Pflug (2005) , multistage 

supply chain management of Lejeune and Ruszczynski (2007) , 

military logistics problem of Kress, Penn, and Polukarov (2007) , 

managing stochastic pollution of waters of Gren, (2008) and so 

on. Problem (C 

2 P) was first introduced by Charnes, Cooper, and 

Symonds (1958) , Miller and Wagner (1965) and Prékopa (1970) . It 

is well known that when the random input has a joint normal dis- 

tribution, problem (C 

2 P) can be reduced to a convex problem and 

thus can be solved efficiently via convex programing techniques 

(see Deák, 20 0 0 ; Szántai, 20 0 0 ). Unfortunately, problem (C 

2 P) is 
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generally difficult to solve due to two major reasons. Firstly, the 

feasible region together with the probabilistic constraint is usually 

not convex, although the set O is convex. Secondly, the probability 

P (�x ≥ ε) is typically difficult to compute since multi-dimensional 

integration is required. 

For the case when the random input is continuous with known 

probability distributions, different approaches have been proposed 

in the literature to overcome the difficulty of the nonconvexity of 

the feasible set defined by the chance constraint. There are ex- 

cellent surveys on probabilistic constrained problems in Prékopa 

(2003) and Shapiro, Dentcheva, and Ruszczy ́nski (2009) and our re- 

views here are mainly inspired by Lejeune (2012) . Problem CCRTM 

was first studied by Kataoka (1963) and Van de Panne and Popp 

(1963) , where they studied convexity of the individual chance 

constraint P (ξ T x ≤ d) ≥ p with ξ being random. Later, Henrion 

(2007) extended the convexity results of Kataoka (1963) and 

Van de Panne and Popp (1963) to a broader class of distribu- 

tions and to more general functions of the decision vector. More 

precisely, Henrion (2007) studied the convexity properties of the 

chance constraint P (ξ T h (x ) ≤ d) ≥ p with ξ being random. For the 

case of the multirow chance constraint, Prékopa (1974) proved the 

quasi-concavity of the function G (x ) = P (�x ≤ β) under some con- 

ditions, where only the matrix � was random. For problem CCRRH, 

( Prékopa, 1973 ) showed that the feasible set of problem (C 

2 P) was 

convex if the random variable ε in constraint (2) was continuously 

distributed with logarithmically concave probability density func- 

tions. Together with the assumption of the convexity of function 

f ( x ), problem (C 

2 P) was hence a convex program and the solution 

to (C 

2 P) could be found via convex programing techniques. Henrion 

and Strugarek (2008) studied the convexity properties of chance 

constraints P (h i (x ) ≥ ζi , i = 1 , . . . , r) ≥ p with ζ being random. For 

more general chance constraint, i.e., P (F (x, ξ ) ≤ 0) ≥ 1 − α, a con- 

vex safe (conservative) approximation was proposed in Nemirovski 

and Shapiro (2006) to build computationally tractable convex inner 

approximations. 

The case when the random variables are discretely distributed 

is extensively studied, such as Lejeune and Ruszczynski (2007) , 

Luedtke and Ahmed (2008) , Kücükyavuz (2012) and so on. Dis- 

crete distributions arise frequently in sample approximation of the 

underlying distribution. If the possible values for random input, 

which is also referred as scenarios , are generated by taking a Monte 

Carlo sample from a general distribution, the resulting problem can 

be viewed as an approximation of the problem with the general 

distribution. We can find feasible solutions and lower bounds for 

the original problem by such sample approximation methods. Fur- 

thermore, the required sample size is polynomial in 1/ α ( Luedtke 

& Ahmed, 2008 ). Related results can be found in Shapiro and 

Homem-de Mello (20 0 0) , Atlason, Epelman, and Henderson (2004) , 

and Henrion and Römisch (2004) . By associating a binary vari- 

able with each scenario, problem ( C 

2 P ) with discrete distributions 

can be reduced to a mixed-integer programing (MIP) reformula- 

tion. In the general case, the number of binary variables usually 

grows linearly with the number of scenarios. In addition, in sce- 

nario approximation approaches, the number of scenarios is O (1/ α) 

and the risk level α in constraint (2) is typically near zero, e.g., 

α = 0 . 01 or α = 0 . 05 . Therefore, the size of the resulted MIP refor- 

mulation of (C 

2 P) is usually much larger than the original problem 

(C 

2 P). Hence the difficulty of solving the resulted MIP reformula- 

tion will be increased. Meanwhile, the MIP reformulation is com- 

monly solved by the MIP solvers in the framework of branch-and- 

bound. The efficiency of the branch-and-bound methods largely 

depends on the tightness of the lower bounds obtained by con- 

tinuous relaxation. However, numerical tests, such as Zheng, Sun, 

Li, and Cui (2012) and Luedtke et al. (2010) , suggest that the con- 

tinuous relaxation of the standard MIP reformulation often pro- 

vides poor lower bounds. Thus, the MIP solvers in the framework 

of branch-and-bound can not solve the MIP reformulation of (C 

2 P) 

efficiently. 

Based on the above discussion, for problem CCP with discrete 

distributions, there were many researches on the improved MIP 

reformulation in the sense that the improved MIP reformulation 

could be solved much more efficiently than the standard MIP refor- 

mulation. For CCRRH, Ruszczy ́nski (2002) developed cutting planes 

and integrated them into a branch-and-cut algorithm to solve its 

MIP reformulation. Luedtke et al. (2010) proposed two strength- 

ened MIP reformulations by deriving strong valid inequalities. Re- 

cently, Lejeune (2012) proposed a novel modeling and solution 

method for CCRRH with a linear objective and linear constraints. 

It was the first time that problem CCP was solved by employing 

the techniques from the pattern recognition field. The crucial as- 

pect of the method in Lejeune (2012) was that the method could 

find the exact solution of CCP fast even though the number of sce- 

narios were extremely large. For CCRTM, Zheng et al. (2012) pro- 

posed an improved MIP reformulation for CCRTM with Value-at- 

Risk constraint P (ξ T Bx ≥ R ) ≥ 1 − α, in the sense that the con- 

tinuous relaxation of the improved MIP reformulation was tighter 

than or at least as tight as that of the standard MIP reformula- 

tion. Beraldi, Bruni, and Guerriero (2010) proposed a tailor-made 

branch-and-bound approach to solve the MIP reformulation of the 

probabilistic set covering problem. Kogan and Lejeune (2014) de- 

veloped a new modeling and solution method for CCRTM with a 

linear objective, linear constraints and discretely distributed ma- 

trix �. They derived three new deterministic formulations and a 

set of strengthening valid inequalities for their studied problems in 

Kogan and Lejeune (2014) . An impressive feature of the integer re- 

formulations of Kogan and Lejeune (2014) was that the number of 

integer variables was independent of the number of scenarios. For 

a more complex and widely applicable class of chance constraints, 

i.e., P ( 
∑ 

j=( j 1 , j 2 ) ∈ J s i j x j1 x j2 ξ j ≤ d i , i ∈ I) ≥ 1 − p with ξ being ran- 

dom, Lejeune and Margot (2016) proposed a new and system- 

atic reformulation and algorithmic framework to solve this class 

of problems. Such complex stochastic quadratic inequalities were 

first studied by Lejeune and Margot (2016) . The key distinguishing 

feature of the proposed method was that the number of binary 

variables did not grow linearly with the number of scenarios. 

In the rest of this paper, we focus on problem (IC 

2 P) with fol- 

lowing finite discrete distribution assumption: 

Assumption 1. The random vector ξ has a finite distribution, i.e., 

there are only finite realizations (scenarios) ξ 1 , . . . , ξN ∈ � 

m of ξ
with probability p 1 , . . . p N and 

∑ N 
j=1 p j = 1 . 

We propose in this paper a novel approach for solving chance 

constrained problems under Assumption 1 . Our method is based 

on recognition that whether or not a scenario ξ j satisfies ( ξ j ) T Bx ≥
ρ is equivalent to whether or not the vector x lies on the positive 

side of hyperplane { x | (ξ j ) T Bx = ρ} . By involving the cell enumer- 

ation method for an arrangement of hyperplanes in discrete ge- 

ometry, we develop a cell-and-bound algorithm to identify the op- 

timal solution to (C 

2 P). Our new algorithm is more efficient than 

continuous relaxation based branch-and-bound algorithms in the 

worst case. Based on the cell-and-bound algorithm, we discover 

a new polynomial subclass of problem (C 

2 P). Furthermore, Our 

new approach provides a promising platform for solving (C 

2 P) effi- 

ciently. The main contributions of this work are as follows: 

• Our new approach opens the interesting connection between 

probabilistically constrained programing and arrangement of 

hyperplanes in discrete geometry. Our new approach provides 

a promising platform for solving (C 

2 P) efficiently. 
• By involving cell enumeration approach, we propose a novel ap- 

proach, named cell-and-bound algorithm, for solving problem 

(C 

2 P) with finite discrete distributions. 
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