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a b s t r a c t 

We study the Bipartite Boolean Quadratic Programming Problem (BBQP) which is an extension of the well 

known Boolean Quadratic Programming Problem (BQP). Applications of the BBQP include mining discrete 

patterns from binary data, approximating matrices by rank-one binary matrices, computing the cut-norm 

of a matrix, and solving optimisation problems such as maximum weight biclique, bipartite maximum 

weight cut, maximum weight induced sub-graph of a bipartite graph, etc. For the BBQP, we first present 

several algorithmic components, specifically, hill climbers and mutations, and then show how to com- 

bine them in a high-performance metaheuristic. Instead of hand-tuning a standard metaheuristic to test 

the efficiency of the hybrid of the components, we chose to use an automated generation of a multi- 

component metaheuristic to save human time, and also improve objectivity in the analysis and compar- 

isons of components. For this we designed a new metaheuristic schema which we call Conditional Markov 

Chain Search (CMCS). We show that CMCS is flexible enough to model several standard metaheuristics; 

this flexibility is controlled by multiple numeric parameters, and so is convenient for automated genera- 

tion. We study the configurations revealed by our approach and show that the best of them outperforms 

the previous state-of-the-art BBQP algorithm by several orders of magnitude. In our experiments we use 

benchmark instances introduced in the preliminary version of this paper and described here, which have 

already become the de facto standard in the BBQP literature. 

© 2017 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 

1. Introduction 

The (Unconstrained) Boolean Quadratic Programming Problem 

(BQP) is to 

maximise f (x ) = x T Q 

′ x + c ′ x + c ′ 0 
subject to x ∈ { 0 , 1 } n , 
where Q 

′ is an n × n real matrix, c ′ is a row vector in R 

n , and 

c ′ 0 is a constant. The BQP is a well-studied problem in the opera- 

tional research literature ( Billionnet, 2004 ). The focus of this paper 

is on a problem closely related to BQP, called the Bipartite (Uncon- 

strained) Boolean Quadratic Programming Problem (BBQP) ( Punnen, 

Sripratak, & Karapetyan, 2015b ). BBQP can be defined as follows: 

maximise f (x, y ) = x T Qy + cx + dy + c 0 

subject to x ∈ { 0 , 1 } m , y ∈ { 0 , 1 } n , 
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where Q = (q i j ) is an m × n real matrix, c = (c 1 , c 2 , . . . , c m 

) is 

a row vector in R 

m , d = (d 1 , d 2 , . . . , d n ) is a row vector in R 

n , 

and c 0 is a constant. Without loss of generality, we assume that 

c 0 = 0 , and m ≤ n (which can be achieved by simply interchang- 

ing the rows and columns if needed). In what follows, we denote 

a BBQP instance built on matrix Q , row vectors c and d and c 0 = 0 

as BBQP( Q , c , d ), and ( x , y ) is a feasible solution of the BBQP if 

x ∈ {0, 1} m and y ∈ {0, 1} n . Also x i stands for the i th compo- 

nent of the vector x and y j stands for the j th component of the 

vector y . 

A graph theoretic interpretation of the BBQP can be given 

as follows ( Punnen et al., 2015b ). Let I = { 1 , 2 , . . . , m } and J = 

{ 1 , 2 , . . . , n } . Consider a bipartite graph G = (I, J, E) . For each node 

i ∈ I and j ∈ J , respective costs c i and d j are prescribed. Further- 

more, for each ( i , j ) ∈ E , a cost q ij is given. Then the Maximum 

Weight Induced Subgraph Problem on G is to find a subgraph G 

′ = 

(I ′ , J ′ , E ′ ) such that 
∑ 

i ∈ I ′ c i + 

∑ 

j∈ J ′ d j + 

∑ 

(i, j) ∈ E ′ q i j is maximised, 

where I ′ ⊆ I , J ′ ⊆ J and G 

′ is induced by I ′ ∪ J ′ . The Maximum 

Weight Induced Subgraph Problem on G is precisely the BBQP, 

where q i j = 0 if ( i , j ) �∈ E . 
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There are some other well known combinatorial optimisation 

problems that can be modelled as a BBQP. Consider the bipartite 

graph G = (I, J, E) with w i j being the weight of the edge ( i , j ) ∈ 

E . Then the Maximum Weight Biclique Problem (MWBP) ( Ambühl, 

Mastrolilli, & Svensson, 2011; Tan, 2008 ) is to find a biclique in G 

of maximum total edge-weight. Define 

q i j = 

{
w i j if (i, j) ∈ E, 

−M otherwise, 

where M is a large positive constant. Set c and d as zero vec- 

tors. Then BBQP( Q , c , d ) solves the MWBP ( Punnen et al., 2015b ). 

This immediately shows that the BBQP is NP-hard and one can 

also establish some approximation hardness results with appropri- 

ate assumptions ( Ambühl et al., 2011; Tan, 2008 ). Note that the 

MWBP has applications in data mining, clustering and bioinfor- 

matics ( Chang, Vakati, Krause, & Eulenstein, 2012; Tanay, Sharan, 

& Shamir, 2002 ) which in turn become applications of BBQP. 

Another application of BBQP arises in approximating a matrix 

by a rank-one binary matrix ( Gillis & Glineur, 2011; Koyutürk, 

Grama, & Ramakrishnan, 20 05; 20 06; Lu, Vaidya, Atluri, Shin, & 

Jiang, 2011; Shen, Ji, & Ye, 2009 ). For example, let H = (h i j ) be a 

given m × n matrix and we want to find an m × n matrix A = 

(a i j ) , where a i j = u i v j and u i , v j ∈ { 0 , 1 } , such that 
∑ m 

i =1 

∑ n 
j=1 (h i j −

u i v j ) 2 is minimised. The matrix A is called a rank one approx- 

imation of H and can be identified by solving the BBQP with 

q i j = 1 − 2 h i j , c i = 0 and d j = 0 for all i ∈ I and j ∈ J . Binary ma- 

trix factorisation is an important topic in mining discrete patterns 

in binary data ( Lu et al., 2011; Shen et al., 2009 ). If u i and v j are 

required to be in {−1 , 1 } then also the resulting factorisation prob- 

lem can be formulated as a BBQP. 

The Maximum Cut Problem on a bipartite graph (MaxCut) can 

be formulated as BBQP ( Punnen et al., 2015b ) and this gives yet 

another application of the model. BBQP can also be used to find 

approximations to the cut-norm of a matrix ( Alon & Naor, 2006 ). 

For theoretical analysis of approximation algorithms for BBQP, 

we refer to Punnen, Sripratak, and Karapetyan (2015a) . 

A preliminary version of this paper was made available to the 

research community in 2012 ( Karapetyan & Punnen, 2012 ). Subse- 

quently Glover, Ye, Punnen, and Kochenberger (2015) and Duarte, 

Laguna, Martí, and Sánchez-Oro (2014) studied heuristic algorithms 

for the problem. The testbed presented in our preliminary re- 

port ( Karapetyan & Punnen, 2012 ) continues to be the source of 

benchmark instances for the BBQP. In this paper, in addition to 

providing a detailed description of the benchmark instances, we 

refine the algorithms reported in Karapetyan and Punnen (2012) , 

introduce a new class of algorithms and give a methodology for 

automated generation of a multi-component metaheuristic. By (al- 

gorithmic) component we mean a black box algorithm that mod- 

ifies the given solution. All the algorithmic components can be 

roughly split into two categories: hill climbers, i.e. components 

that guarantee that the solution not be worsened, and mutations, 

i.e. components that usually worsen the solution. Our main goals 

are to verify that the proposed components are sufficient to build a 

high-performance heuristic for BBQP and also investigate the most 

promising combinations. By this computational study, we also fur- 

ther support the ideas in the areas of automated parameter tun- 

ing and algorithm configuration (e.g. see Adenso-Díaz & Laguna, 

2006; Bezerra, López-Ibáñez, & Stützle, 2015; Hutter, Hoos, Leyton- 

Brown, & Stützle, 2009; Hutter, Hoos, & Stützle, 2007 ). Thus we 

rely entirely on automated configuration. During configuration, we 

use smaller instances compared to those in our benchmark. This 

way we ensure that we do not over-train our metaheuristics to 

the benchmark instances – an issue that is often quite hard to 

avoid with manual design and configuration. We apply the result- 

ing multi-component metaheuristic to our benchmark instances 

demonstrating that a combination of several simple components 

can yield powerful metaheuristics clearly outperforming the state- 

of-the-art BBQP methods. 

The main contributions of the paper include: 

• In Section 2 , we describe several BBQP algorithmic components, 

one of which is completely new. 
• In Section 3 we take the Markov Chain idea, such as in the 

Markov Chain Hyper-heuristic ( McClymont & Keedwell, 2011 ), 

but restrict it to use static weights (hence having no on- 

line learning, and so, arguably, not best labelled as a ‘hyper- 

heuristic’), but instead adding a powerful extension to it, giving 

what we call ‘Conditional Markov Chain Search (CMCS)’. 
• In Section 4 we describe five classes of instances correspond- 

ing to various applications of BBQP. Based on these classes, a 

set of benchmark instances is developed. These test instances 

were first introduced in the preliminary version of this pa- 

per ( Karapetyan & Punnen, 2012 ) and since then used in a 

number of papers ( Duarte et al., 2014; Glover et al., 2015 ) be- 

coming de facto standard testbed for the BBQP. 
• In Section 5 we use automated configuration of CMCS to 

demonstrate the performance of individual components and 

their combinations, and give details sufficient to reproduce all 

of the generated metaheuristics. We also show that a special 

case of CMCS that we proposed significantly outperforms sev- 

eral standard metaheuristics, on this problem. 
• In Section 6 we show that our best machine-generated meta- 

heuristic is, by several orders of magnitude, faster than the pre- 

vious state-of-the-art BBQP method. 

2. Algorithmic components 

In this section we introduce several algorithmic components 

for BBQP. Except for ‘ Repair ’ and ‘Mutation-X/Y’, these components 

were introduced in Karapetyan and Punnen (2012) . A summary of 

the components discussed below is provided in Table 1 . The com- 

ponents are selected to cover a reasonable mix of fast and slow 

hill climbing operators for intensification, along with mutation op- 

erators that can be expected to increase diversification, and with 

Repair that does a bit of both. Note that a hill climbing component 

can potentially implement either a simple improvement move or a 

repetitive local search procedure with iterated operators that ter- 

minates only when a local maximum is reached. However in this 

project we opted for single moves leaving the control to the meta- 

heuristic framework. 

2.1. Components: OPTIMISE-X / OPTIMISE-Y 

Observe that, given a fixed vector x , we can efficiently compute 

an optimal y = y opt (x ) : 

y opt (x ) j = 

{ 

1 if 
∑ 

i ∈ I 
q i j x i + d j > 0 , 

0 otherwise. 
(1) 

This suggests a hill climber operator Optimise-Y ( OptY ) that fixes x 

and replaces y with y opt (x ) . Eq. (1) was first introduced in Punnen 

et al. (2015b) and then used as a neighbourhood search operator 

in Karapetyan and Punnen (2012) , Duarte et al. (2014) and Glover 

et al. (2015) . 

OptY implements a hill climber operator in the neighbourhood 

N OptY (x, y ) = { (x, y ′ ) : y ′ ∈ { 0 , 1 } n } , where ( x , y ) is the original so- 

lution. Observe that the running time of OptY is polynomial and 

the size of the neighbourhood | N OptY (x, y ) | = 2 n is exponential; 

hence OptY corresponds to an operator that could be used in a 

very large-scale neighbourhood search (VLNS), a method that is of- 

ten considered as a powerful approach to hard combinatorial opti- 

misation problems Ahuja, Ergun, Orlin, Punnen, (2002) . 

Observe that OptY finds a local maximum after the first appli- 

cation because N(x, y ) = N(x, y opt (y )) (that is, it is an ‘idempotent 
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