
European Journal of Operational Research 260 (2017) 494–506

Contents lists available at ScienceDirect

European Journal of Operational Research

journal homepage: www.elsevier.com/locate/ejor

Discrete Optimization

Markov Chain methods for the Bipartite Boolean Quadratic

Programming Problem

Daniel Karapetyan

a , b , c , ∗, Abraham P. Punnen

c , Andrew J. Parkes b

a Institute for Analytics and Data Science, University of Essex, Colchester CO4 3SQ, UK
b ASAP Research Group, School of Computer Science, University of Nottingham, Jubilee Campus, Wollaton Road, Nottingham NG8 1BB, UK
c Department of Mathematics, Simon Fraser University Surrey, Central City, 250-13450 102nd AV, Surrey, British Columbia V3T 0A3, Canada

a r t i c l e i n f o

Article history:

Received 27 April 2016

Accepted 2 January 2017

Available online 6 January 2017

Keywords:

Artificial intelligence

Bipartite Boolean quadratic programming

Automated heuristic configuration

Benchmark

a b s t r a c t

We study the Bipartite Boolean Quadratic Programming Problem (BBQP) which is an extension of the well

known Boolean Quadratic Programming Problem (BQP). Applications of the BBQP include mining discrete

patterns from binary data, approximating matrices by rank-one binary matrices, computing the cut-norm

of a matrix, and solving optimisation problems such as maximum weight biclique, bipartite maximum

weight cut, maximum weight induced sub-graph of a bipartite graph, etc. For the BBQP, we first present

several algorithmic components, specifically, hill climbers and mutations, and then show how to com-

bine them in a high-performance metaheuristic. Instead of hand-tuning a standard metaheuristic to test

the efficiency of the hybrid of the components, we chose to use an automated generation of a multi-

component metaheuristic to save human time, and also improve objectivity in the analysis and compar-

isons of components. For this we designed a new metaheuristic schema which we call Conditional Markov

Chain Search (CMCS). We show that CMCS is flexible enough to model several standard metaheuristics;

this flexibility is controlled by multiple numeric parameters, and so is convenient for automated genera-

tion. We study the configurations revealed by our approach and show that the best of them outperforms

the previous state-of-the-art BBQP algorithm by several orders of magnitude. In our experiments we use

benchmark instances introduced in the preliminary version of this paper and described here, which have

already become the de facto standard in the BBQP literature.

© 2017 The Authors. Published by Elsevier B.V.

This is an open access article under the CC BY license. (http://creativecommons.org/licenses/by/4.0/)

1. Introduction

The (Unconstrained) Boolean Quadratic Programming Problem

(BQP) is to

maximise f (x) = x T Q

′ x + c ′ x + c ′ 0
subject to x ∈ { 0 , 1 } n ,
where Q

′ is an n × n real matrix, c ′ is a row vector in R

n , and

c ′ 0 is a constant. The BQP is a well-studied problem in the opera-

tional research literature (Billionnet, 2004). The focus of this paper

is on a problem closely related to BQP, called the Bipartite (Uncon-

strained) Boolean Quadratic Programming Problem (BBQP) (Punnen,

Sripratak, & Karapetyan, 2015b). BBQP can be defined as follows:

maximise f (x, y) = x T Qy + cx + dy + c 0

subject to x ∈ { 0 , 1 } m , y ∈ { 0 , 1 } n ,

∗ Corresponding author at: Institute for Analytics and Data Science, University of

Essex, Colchester CO4 3SQ, UK.

E-mail addresses: daniel.karapetyan@gmail.com (D. Karapetyan), apunnen@sfu.ca

(A.P. Punnen), andrew.parkes@nottingham.ac.uk (A.J. Parkes).

where Q = (q i j) is an m × n real matrix, c = (c 1 , c 2 , . . . , c m

) is

a row vector in R

m , d = (d 1 , d 2 , . . . , d n) is a row vector in R

n ,

and c 0 is a constant. Without loss of generality, we assume that

c 0 = 0 , and m ≤ n (which can be achieved by simply interchang-

ing the rows and columns if needed). In what follows, we denote

a BBQP instance built on matrix Q , row vectors c and d and c 0 = 0

as BBQP(Q , c , d), and (x , y) is a feasible solution of the BBQP if

x ∈ {0, 1} m and y ∈ {0, 1} n . Also x i stands for the i th compo-

nent of the vector x and y j stands for the j th component of the

vector y .

A graph theoretic interpretation of the BBQP can be given

as follows (Punnen et al., 2015b). Let I = { 1 , 2 , . . . , m } and J =

{ 1 , 2 , . . . , n } . Consider a bipartite graph G = (I, J, E) . For each node

i ∈ I and j ∈ J , respective costs c i and d j are prescribed. Further-

more, for each (i , j) ∈ E , a cost q ij is given. Then the Maximum

Weight Induced Subgraph Problem on G is to find a subgraph G

′ =

(I ′ , J ′ , E ′) such that
∑

i ∈ I ′ c i +

∑

j∈ J ′ d j +

∑

(i, j) ∈ E ′ q i j is maximised,

where I ′ ⊆ I , J ′ ⊆ J and G

′ is induced by I ′ ∪ J ′ . The Maximum

Weight Induced Subgraph Problem on G is precisely the BBQP,

where q i j = 0 if (i , j) �∈ E .

http://dx.doi.org/10.1016/j.ejor.2017.01.001

0377-2217/© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license. (http://creativecommons.org/licenses/by/4.0/)

http://dx.doi.org/10.1016/j.ejor.2017.01.001
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2017.01.001&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:daniel.karapetyan@gmail.com
mailto:apunnen@sfu.ca
mailto:andrew.parkes@nottingham.ac.uk
http://dx.doi.org/10.1016/j.ejor.2017.01.001
http://creativecommons.org/licenses/by/4.0/

D. Karapetyan et al. / European Journal of Operational Research 260 (2017) 494–506 495

There are some other well known combinatorial optimisation

problems that can be modelled as a BBQP. Consider the bipartite

graph G = (I, J, E) with w i j being the weight of the edge (i , j) ∈

E . Then the Maximum Weight Biclique Problem (MWBP) (Ambühl,

Mastrolilli, & Svensson, 2011; Tan, 2008) is to find a biclique in G

of maximum total edge-weight. Define

q i j =

{
w i j if (i, j) ∈ E,

−M otherwise,

where M is a large positive constant. Set c and d as zero vec-

tors. Then BBQP(Q , c , d) solves the MWBP (Punnen et al., 2015b).

This immediately shows that the BBQP is NP-hard and one can

also establish some approximation hardness results with appropri-

ate assumptions (Ambühl et al., 2011; Tan, 2008). Note that the

MWBP has applications in data mining, clustering and bioinfor-

matics (Chang, Vakati, Krause, & Eulenstein, 2012; Tanay, Sharan,

& Shamir, 2002) which in turn become applications of BBQP.

Another application of BBQP arises in approximating a matrix

by a rank-one binary matrix (Gillis & Glineur, 2011; Koyutürk,

Grama, & Ramakrishnan, 20 05; 20 06; Lu, Vaidya, Atluri, Shin, &

Jiang, 2011; Shen, Ji, & Ye, 2009). For example, let H = (h i j) be a

given m × n matrix and we want to find an m × n matrix A =

(a i j) , where a i j = u i v j and u i , v j ∈ { 0 , 1 } , such that
∑ m

i =1

∑ n
j=1 (h i j −

u i v j) 2 is minimised. The matrix A is called a rank one approx-

imation of H and can be identified by solving the BBQP with

q i j = 1 − 2 h i j , c i = 0 and d j = 0 for all i ∈ I and j ∈ J . Binary ma-

trix factorisation is an important topic in mining discrete patterns

in binary data (Lu et al., 2011; Shen et al., 2009). If u i and v j are

required to be in {−1 , 1 } then also the resulting factorisation prob-

lem can be formulated as a BBQP.

The Maximum Cut Problem on a bipartite graph (MaxCut) can

be formulated as BBQP (Punnen et al., 2015b) and this gives yet

another application of the model. BBQP can also be used to find

approximations to the cut-norm of a matrix (Alon & Naor, 2006).

For theoretical analysis of approximation algorithms for BBQP,

we refer to Punnen, Sripratak, and Karapetyan (2015a) .

A preliminary version of this paper was made available to the

research community in 2012 (Karapetyan & Punnen, 2012). Subse-

quently Glover, Ye, Punnen, and Kochenberger (2015) and Duarte,

Laguna, Martí, and Sánchez-Oro (2014) studied heuristic algorithms

for the problem. The testbed presented in our preliminary re-

port (Karapetyan & Punnen, 2012) continues to be the source of

benchmark instances for the BBQP. In this paper, in addition to

providing a detailed description of the benchmark instances, we

refine the algorithms reported in Karapetyan and Punnen (2012) ,

introduce a new class of algorithms and give a methodology for

automated generation of a multi-component metaheuristic. By (al-

gorithmic) component we mean a black box algorithm that mod-

ifies the given solution. All the algorithmic components can be

roughly split into two categories: hill climbers, i.e. components

that guarantee that the solution not be worsened, and mutations,

i.e. components that usually worsen the solution. Our main goals

are to verify that the proposed components are sufficient to build a

high-performance heuristic for BBQP and also investigate the most

promising combinations. By this computational study, we also fur-

ther support the ideas in the areas of automated parameter tun-

ing and algorithm configuration (e.g. see Adenso-Díaz & Laguna,

2006; Bezerra, López-Ibáñez, & Stützle, 2015; Hutter, Hoos, Leyton-

Brown, & Stützle, 2009; Hutter, Hoos, & Stützle, 2007). Thus we

rely entirely on automated configuration. During configuration, we

use smaller instances compared to those in our benchmark. This

way we ensure that we do not over-train our metaheuristics to

the benchmark instances – an issue that is often quite hard to

avoid with manual design and configuration. We apply the result-

ing multi-component metaheuristic to our benchmark instances

demonstrating that a combination of several simple components

can yield powerful metaheuristics clearly outperforming the state-

of-the-art BBQP methods.

The main contributions of the paper include:

• In Section 2 , we describe several BBQP algorithmic components,

one of which is completely new.
• In Section 3 we take the Markov Chain idea, such as in the

Markov Chain Hyper-heuristic (McClymont & Keedwell, 2011),

but restrict it to use static weights (hence having no on-

line learning, and so, arguably, not best labelled as a ‘hyper-

heuristic’), but instead adding a powerful extension to it, giving

what we call ‘Conditional Markov Chain Search (CMCS)’.
• In Section 4 we describe five classes of instances correspond-

ing to various applications of BBQP. Based on these classes, a

set of benchmark instances is developed. These test instances

were first introduced in the preliminary version of this pa-

per (Karapetyan & Punnen, 2012) and since then used in a

number of papers (Duarte et al., 2014; Glover et al., 2015) be-

coming de facto standard testbed for the BBQP.
• In Section 5 we use automated configuration of CMCS to

demonstrate the performance of individual components and

their combinations, and give details sufficient to reproduce all

of the generated metaheuristics. We also show that a special

case of CMCS that we proposed significantly outperforms sev-

eral standard metaheuristics, on this problem.
• In Section 6 we show that our best machine-generated meta-

heuristic is, by several orders of magnitude, faster than the pre-

vious state-of-the-art BBQP method.

2. Algorithmic components

In this section we introduce several algorithmic components

for BBQP. Except for ‘ Repair ’ and ‘Mutation-X/Y’, these components

were introduced in Karapetyan and Punnen (2012) . A summary of

the components discussed below is provided in Table 1 . The com-

ponents are selected to cover a reasonable mix of fast and slow

hill climbing operators for intensification, along with mutation op-

erators that can be expected to increase diversification, and with

Repair that does a bit of both. Note that a hill climbing component

can potentially implement either a simple improvement move or a

repetitive local search procedure with iterated operators that ter-

minates only when a local maximum is reached. However in this

project we opted for single moves leaving the control to the meta-

heuristic framework.

2.1. Components: OPTIMISE-X / OPTIMISE-Y

Observe that, given a fixed vector x , we can efficiently compute

an optimal y = y opt (x) :

y opt (x) j =

{

1 if
∑

i ∈ I
q i j x i + d j > 0 ,

0 otherwise.
(1)

This suggests a hill climber operator Optimise-Y (OptY) that fixes x

and replaces y with y opt (x) . Eq. (1) was first introduced in Punnen

et al. (2015b) and then used as a neighbourhood search operator

in Karapetyan and Punnen (2012) , Duarte et al. (2014) and Glover

et al. (2015) .

OptY implements a hill climber operator in the neighbourhood

N OptY (x, y) = { (x, y ′) : y ′ ∈ { 0 , 1 } n } , where (x , y) is the original so-

lution. Observe that the running time of OptY is polynomial and

the size of the neighbourhood | N OptY (x, y) | = 2 n is exponential;

hence OptY corresponds to an operator that could be used in a

very large-scale neighbourhood search (VLNS), a method that is of-

ten considered as a powerful approach to hard combinatorial opti-

misation problems Ahuja, Ergun, Orlin, Punnen, (2002) .

Observe that OptY finds a local maximum after the first appli-

cation because N(x, y) = N(x, y opt (y)) (that is, it is an ‘idempotent

Download English Version:

https://daneshyari.com/en/article/4959843

Download Persian Version:

https://daneshyari.com/article/4959843

Daneshyari.com

https://daneshyari.com/en/article/4959843
https://daneshyari.com/article/4959843
https://daneshyari.com

