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a  b  s  t  r  a  c  t

Demand  responsive  transport  allows  customers  to  be carried  to  their  destination  as  with  a  taxi  service,
provided  that  the  customers  are  grouped  in the  same  vehicles  in  order  to reduce  operational  costs.  This
kind of service  is  related  to  the  dial-a-ride  problem.  However,  in  order  to  improve  the  quality  of  service,
demand  responsive  transport  needs  more  flexibility.  This  paper  tries  to  address  this  issue by proposing  an
original evolutionary  approach.  In order  to propose  a set  of compromise  solutions  to the decision-maker,
this  approach  optimizes  three  objectives  concurrently.  Moreover,  in order  to  intensify  the search  process,
this  multi-objective  evolutionary  approach  is hybridized  with  a  local  search.  Results  obtained  on  random
and realistic  problems  are  detailed  to  compare  three  state-of-the-art  algorithms  and  discussed  from  an
operational  point  of  view.

©  2011  Elsevier  B.V.  All rights  reserved.

1. Introduction

Sparsely inhabited areas usually suffer from a lack of transport
service, given that the authorities do not want to accept the cost of a
transport service insufficiently used [1]. Demand responsive trans-
port (DRT) tries to address this issue. Indeed, this service of people
transportation is activated on demand only and involves the sat-
isfaction of customers’ demands. It is necessary for the customers
to have booked the service by defining a pick-up point and a des-
tination (delivery) at an arranged time. A DRT service manages a
fleet of vehicles and aims at grouping as many customers as pos-
sible in the same vehicles in order to reduce the operational costs.
Given that each customer has his own destination, the grouping
and the routing are optimized according to several criteria and a
set of constraints imposed by the capacity of the vehicles (number
of seats) and the timetable which is defined by the pre-arranged
pick-up and delivery times. One vehicle starts from a depot, then
follows an itinerary along which it picks up customers and carries
them to the destination while respecting the predefined timetable.

In its usual form, DRT is related to the dial-a-ride problem
(DARP) [2,3] or to the vehicle routing problem (VRP) [4]. Indeed,
both problems consist in optimizing the vehicle routes by reducing
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the number of vehicles and the journey times. The VRP is the for-
mulation of routing problems with loads to pick up and deliver [5],
whereas the DARP formulates routing problems with passengers
(one load equals 1). Another main difference between the DARP
and the VRP lies in the precedence constraints imposed by the cus-
tomer’s journeys [6],  and in the acceptance of delays (quality of
service). Thus, a DRT service is a specific case of the DARP which is
the academic formulation of a routing service with passengers.

Globally, the DARP may  involve a set of objectives, usually con-
flicting, and which have to be optimized simultaneously. However,
optimizing one objective often happens at the expense of the oth-
ers. This is the reason why a multi-objective approach may be more
than relevant in this context. In this paper, the DARP addressed is a
multi-objective combinatorial optimization problem (MCOP) with
conflicting criteria. Therefore, the search process aims at concur-
rently optimizing three objectives. The first one is economic and
consists in minimizing the number of vehicles used in order to
reduce the operational costs. The second one looks to reduce the
duration of the vehicles’ journeys. This objective could be seen as
an environmental objective in so far as we try to limit the emission
of pollutants (and also to reduce the carbon tax). The last objective
minimizes the likely delays which may  occur (quality of service).
Besides, the approach is focused on finding a set of sub-optimal
solutions, known as an approximation of the Pareto front when
mapped into the objective space. A large number of MCOPs  are
known to be NP-hard and intractable [7],  so that large-size problem
instances cannot, in general, be solved exactly. Some exceptions
can be noticed for small bi-objective [8,9] and multi-objective [10]
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problems. Since the DARP is known to be NP-hard in its single-
objective formulation [2],  so is its multi-objective variant.

Although there are a lot of approaches solving the DARP [2],  very
few use evolutionary algorithms with a multi-objective approach.
Indeed, they usually aggregate multiple objective functions for
optimizing a single-objective problem [11–14].  Although meth-
ods based on multi-objective evolutionary algorithms exist to solve
the VRP [5,15],  these are not necessarily adapted to solve a DARP.
However, a recent study deals with a multi-objective DARP, but
not necessarily with evolutionary algorithms. In [16], a two-phase
heuristic is proposed, but for two-objective cases only.

In this paper, the approach proposed to solve the DRT problem
(DRTP) is the result of a preliminary work based on evolu-
tionary algorithms [17]. An encoding mechanism based on a
two-dimensional representation is provided, as well as a spe-
cific initialization strategy and adapted variation and improvement
operators. Furthermore, a body of additional values are proposed to
significantly improve the DRTP solving. To this end, a set of perfor-
mance analysis is proposed, detailed and discussed, in particular: a
calibration of crossover and mutation rates is carried out through
two performance indicators; an iterative local search (ILS) is added
in the mutation operator; an experimental analysis of performance
along time is performed on several sets of instances (random, real-
istic and large-size). Finally, a comparison with and without the ILS
is provided and analyzed.

The topic of the paper is to study the relevance of this kind of
approach in an operational context. That is why several aims have
to be achieved. One of them is to be capable of producing solu-
tions in a short period of time. Indeed, a lot of DRT services usually
impose booking several hours in advance and need methods allow-
ing the reduction of this time. Besides, the use of a multi-objective
approach would help decision-makers by providing them with a
set of compromise solutions. This method will benefit from the
features of evolutionary multi-objective optimization algorithms,
which have received a particular interest over the last decades. Such
methodologies have shown their efficiency to solve real-life prob-
lems [18]. In this perspective, the ILS will be used in the mutation
operator in the same way as in a memetic algorithm [19]. The rele-
vance of using an iterated local search in the mutation operator will
be analyzed and discussed. As the instances used in the benchmarks
are very often not relevant to real life, realistic instances will be used
to assess the performance of the proposed approach. That is why
the second aim of the approach is to be able to cope with both real-
istic and random instances. The third aim of this work consists of
the comparison of three state-of-the-art evolutionary algorithms:
the Non-dominated Sorting Genetic Algorithm II (NSGA-II) [20], the
Strength Pareto Evolutionary Algorithm 2 (SPEA-2) [21] and the
Indicator Based Evolutionary Algorithm (IBEA) [22]. The candidate
algorithms are compared according to a set of different parame-
ters: mutation and crossover rates, instances sizes and structures,
computation time. These experiments tend to highlight the best
candidate algorithm in an operational context.

The paper is organized as follows. The formulation of the
problem under consideration is provided in Section 2. The main
principles of multi-objective optimization and the three candidate
algorithms used in this work are presented in Section 3. The encod-
ing of the problem, as well as the initialization and the variation
operators, are detailed in Section 4. Results are provided and dis-
cussed in Section 5. Finally Section 6 concludes the paper.

2. Problem definition

In order to help the reader, the symbols used in the paper are
summarized in Table 1.

Table 1
Definition of symbols used for the DRTP.

Input data

fi Objective function i
� Set of the used vehicles
D Depot of the vehicles
V Set of the pick-up (V+) and delivery (V−) points

such that V = V+ ∪ V−

x, y Arbitrary points such that {x, y} ∈ V
tx→y Journey duration from x to y
dx Delay at a point x
R Set of the requests
r A request such that r ∈ R
r+ (resp. r−) Pick-up (resp. delivery) point of the request r

such that r+ ∈ V+, r− ∈ V−

qr Number of people of request r to be carried
v A vehicle such that v ∈ �

When crossing point x, it is denoted: vx

Qv Capacity of vehicle v, v ∈ �
hr+ Desired pick-up time
hr− Theoretical arrival time
kr Relaxation coefficient
kw Coefficient for the time windows

Variables
Rmin Set of minimal requests such that Rmin ⊂ R
tv Amount of all journey durations

between each point visited by vehicle v
dv Sum of each delay of vehicle v at delivery points
pv Number of passengers in vehicle v
Hx Effective arrival time at point x
wx Time window at point x

2.1. Objectives formulation

The multi-objective problem under study can be formulated as
a set of three objective functions to optimize (f = (f1, f2, f3)) and a set
of constraints to be taken into account. Problem solving is based on
specific parameters, such as a relaxation and time windows which
introduce more tolerance and flexibility to the slight delays which
may  occur during the journey. Since the DRTP is analogous to a
DARP, the reader can refer to [2] to have mathematical models. Here
we only detail the specificities of the DRTP and its multi-objective
formulation. Therefore, in the DRTP under study, we aim to opti-
mize three objectives: (1) minimize the number of vehicles used:
function f1 (Eq. (2)); (2) minimize the journey durations: function
f2 (Eq. (3)); (3) minimize the delays: function f3 Eq. (4).

f  = (f1, f2, f3) (1)

f1 = min  |�|  (2)

f2 = min
∑
v∈�

tv (3)

f3 = min
∑
v∈�

dv (4)

2.2. Introduction of delay tolerance and time windows

A usual DRT service uses the tolerance of the customers to accept
delays. Making detours allows a vehicle to group the customers
even if that produces delays. To deal with these delays, a coef-
ficient of relaxation kr is introduced and applied to the journey
duration for defining a maximal delivery time. Let t′r+→r− be the
slackened journey duration when kr > 1: t′r+→r− = kr.tr+→r− . Con-
sequently, the maximal delivery time h′r− is defined as follows:
h′r− = hr+ + t′r+→r−

In routing problems, the time windows define the time slots
during which the picking up and the deliveries can be done. A time
window at point r+ is denoted wr+ and its size is proportional to
the theoretical journey duration to the point r−: wr+ = kw.tr+→r− ,
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