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a b s t r a c t 

The Multidimensional Multiple-choice Knapsack Problem (MMKP) is an important NP-hard combinato- 

rial optimization problem with many applications. We propose a new iterative pseudo-gap enumeration 

approach to solving MMKPs. The core of our algorithm is a family of additional cuts derived from the 

reduced costs constraint of the nonbasic variables by reference to a pseudo-gap . We then introduce a 

strategy to enumerate the pseudo-gap values. Joint with CPLEX, we evaluate our approach on two sets 

of benchmark instances and compare our results with the best solutions reported by other heuristics in 

the literature. It discovers 10 new better lower bounds on 37 well-known benchmark instances with a 

time limit of 1 hour for each instance. We further give direct comparison between our algorithm and one 

state-of-the-art “reduce and solve” approach on the same machine with the same CPLEX, experimental 

results show that our algorithm is very competitive, outperforming “reduce and solve” on 18 cases out of 

37. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

The Multidimensional Multiple-choice Knapsack Problem 

(MMKP) is one of the hardest variants of the Knapsack Problem 

( Hifi & Sbihi, 2004 ). It has many real-world applications, such as 

logistics ( Basnet & Wilson, 2005 ), running time resource man- 

agement ( Ykman-Couvreur, Nollet, Catthoor, & Corporaal, 2006 ), 

global routing of wiring in circuits ( Shojaei, Wu, Davoodi, & Bas- 

ten, 2010 ), web service composition ( Yu, Zhang, & Lin, 2007 ) and 

capital budgeting ( Pisinger, 2001 ), the strike force asset allocation 

problem ( Li, Curry, & Boyd, 2004 ), etc. 

Suppose there is a set of items N , which is divided into n dis- 

joint subsets, where each item has an m dimensional cost and a 

profit value, the MMKP asks to select exactly one item from each 

subset such that the summed cost on each dimension will not ex- 

ceed the given bound, while maximizing the summed profit. In the 

literature, the requirement of selecting exactly one item from each 

subset is commonly named as the choice-constraint , the subset of 

items is referred to as group . 
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More formally, let x be a zero-one vector where x j = 1 means 

item with index j is selected, p j and vector v j = (v 1 
j 
, v 2 

j 
, . . . , v m 

j 
) are 

respectively the profit value and cost vector associated with j . The 

resource bound is given by vector b = (b 1 , b 2 , .., b m ) , and N i is the 

set of items in group i . We can formulate the MMKP as a 0 –1 Inte- 

ger Linear Programming (ILP) problem: 

max 
∑ 

j∈ N 
p j x j (1) 

subject to 

∑ 

j∈ N 
v k j x j ≤ b k , k = 1 , ..., m, (2) 

∑ 

j∈ N i 
x j = 1 , i = 1 , ..., n, ∪ i =1 ..n N i = N, (3) 

x j ∈ { 0 , 1 } , j = 1 , ..., | N| . (4) 

In this paper, we propose a new approach, namely Iterative 

Pseudo-Gap Enumeration, for solving MMKPs. Our algorithm starts 

by obtaining an upper bound from solving the Linear Program- 

ming (LP) relaxation, and then by reference to a pseudo-gap and 

a reduced cost constraint, we propose to derive a new family of 

pseudo cuts that constrain variables from different groups. Finally, 
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we introduce a simple strategy to enumerate the pseudo-gap itera- 

tively. Joint with CPLEX to solve the strengthened problem at each 

iteration, we test our approach on 37 instances from the literature. 

It updates 10 new lower bounds, given a run-time of 1 hour for 

each instance, outperforms the state-of-the-art approach in the lit- 

erature when running on the same machine. 

The rest of our paper is organized as follows. In Section 2 , we 

review the related work. In Section 3 , we explain our approach 

in detail. We then present our experimental studies in Section 4 . 

Section 5 concludes this paper. 

2. Related work 

A number of algorithms have been proposed for tackling MMKP. 

Exact methods based on Branch and Bound ( Ghasemi & Razzazi, 

2011; Khan, 1998; Sbihi, 2007 ) are able to guarantee the obtained 

solution to be optimal after the algorithm terminates, however sys- 

tematic search without heuristics usually requires intractable com- 

putation time to obtain high quality solutions for large-scale in- 

stances. 

It is believed that the first heuristic results were due to Moser, 

Jokanovic, and Shiratori (1997) , who proposed a heuristic algorithm 

based on Lagrangian Relaxation that starts from building an infea- 

sible solution, then repeatedly permutes to reduce the infeasibility. 

Their method was improved by Akbar, Manning, Shoja, and Khan 

(2001) . Khan, Li, Manning, and Akbar (2002) proposed a heuris- 

tic based on the aggressive resource usage, and they claimed that 

their heuristic performs better than Moser’s. However, a guided lo- 

cal search and a reactive local search heuristic both proposed by 

Hifi and Sbihi (2004) and Hifi, Michrafy, and Sbihi (2006) were 

able to outperform Khan and Moser’s heuristics. Then, a column 

generation method proposed by Cherfi and Hifi (2010) obtained 

better results on the benchmark instances used by the previous 

heuristics. Cherfi and Hifi (2009) later proposed a hybrid algorithm 

that combines local branching with column generation and a trun- 

cated branch-and-bound. Cherfi and Hifi’s hybrid algorithm outper- 

formed all previous approaches substantially. 

In fact, due to the different real-world application requirements, 

the approaches for tackling MMKPs can be grouped into two cate- 

gories. The first ones are fast heuristics that focus on finding fea- 

sible solutions at a small computation cost, particularly to meet 

the requirement of real-time applications. The methods proposed 

by Ykman-Couvreur et al. (2006) , Htiouech, Bouamama, and At- 

tia (2013) , Parra-Hernandez and Dimopoulos (2005) , Xia, Gao, and 

Li (2015) and Shojaei, Ghamarian, Basten, and Geilen (2009) be- 

long to this route. The second ones pay more effort s on high qual- 

ity solutions. The iterative relaxation based heuristic introduced 

by Hanafi, Mansi, and Wilbaut (2009) , a family of iterative semi- 

continuous relaxation heuristics named ILPH, IMIPH, IIRH and IS- 

CRH proposed by Crévits, Hanafi, Mansi, and Wilbaut (2012) , and 

another hybrid heuristic by Mansi, Alves, Valério de Carvalho, and 

Hanafi (2013) that consists of a family of cuts to define a reduced 

problem and a reformulation procedure are all of this sort. 

The most recent approach “reduce and solve” Chen and Hao 

(2014) adopts both group fixing and variable fixing to obtain re- 

duced problems, and then solves the reduced problems by the In- 

teger Linear Programming (ILP) solver CPLEX. Based on different 

enumerating methods, two variants namely PEGF and PERC are ac- 

tually defined. The “reduce and solve” approach found most of the 

current best known results on the set of 27 standard benchmark 

instances and 10 new irregular structure instances introduced by a 

fully parameterized CPH heuristic based on pareto algebra ( Shojaei, 

Basten, Geilen, & Davoodi, 2013 ). The comparison between the “re- 

duce and solve” approaches and CPH ( Chen & Hao, 2014 ) over 

these 37 instances demonstrates that the two variants PEGF and 

PERC of “reduce and solve” are overall better than CPH. 

It is worth noting that recent high solution quality aimed ap- 

proaches ( Chen & Hao, 2014; Crévits et al., 2012; Hanafi et al., 

2009; Mansi et al., 2013 ) share the similar idea to reduce the prob- 

lem by proposed pseudo cuts, and then the reduced problem is 

solved by an ILP solver, namely CPLEX. The key difference of these 

approaches is their proposed pseudo cuts and how they iteratively 

adjust their pseudo cuts. 

In this paper, we present a new Iterative Pseudo Gap Enumer- 

ation (IPGE) approach for the MMKP. We introduce the concept 

of pseudo-gap which serves as a hypothesized gap between the 

upper bound and lower bound of the original problem. Based on 

the pseudo-gap , we show that a new family of cuts could be de- 

rived by the reduced cost constraints ( Boussier, Vasquez, Vimont, 

Hanafi, & Michelon, 2010; Saunders & Schinzinger, 1970; Vimont, 

Boussier, & Vasquez, 2008 ). After applying these cuts, the strength- 

ened problem is solved by the ILP solver CPLEX. We further intro- 

duce a strategy to enumerate the pseudo-gap , thereby realizing an 

iterative method that converges to an optimal solution after the 

pseudo-gap becomes valid. 

To evaluate the effectiveness of IPGE, we conduct experimen- 

tal studies on the 37 benchmark instances ( Chen & Hao, 2014 ), 

among which 27 are with regular structures and 10 are with ir- 

regular structures, where regular or irregular structure indicates 

whether all groups of an instance have exactly the same number 

of items or not. The comparative experiments show that our al- 

gorithm competes favorably with the state-of-the-art “reduce and 

solve” approach. In particular, given a run time of 1 hour for each 

instance, IPGE is able to report 6 new better lower bounds on the 

27 regular structure instances, and 4 on the 10 irregular structure 

instances, even though the best lower bounds from the literature 

have been regarded as very high. 

3. An Iterative Pseudo Gap Enumeration approach to the 

MMKP 

IPGE is essentially a two-step iterative procedure. In the first 

step, a family of pseudo cuts/constraints is derived from the re- 

duced cost constraints with regarding to a pseudo-gap . Then the 

original problem with these pseudo cuts is solved by calling an 

ILP solver in the second step. In this section, we first show how 

to generate the pseudo cuts given there is a pseudo-gap at hand, 

after that we present how the pseudo-gap is initially defined and 

adjusted iteratively, finally we give our complete algorithm. 

3.1. Definitions 

For the convenience of understanding, we introduce some defi- 

nitions that are consistently used in this paper. 

• P is the given MMKP problem instance. 
• x ∗ denotes an optimal solution to P . 
• LP ( P ) is the Linear Programming Relaxation of P . 
• x̄ is the optimal solution to LP ( P ). 
• r j denotes the reduced cost corresponding to x̄ j , i.e., variable 

with index j . 
• v (P ) and v̄ (P ) are a lower bound and an upper bound for prob- 

lem P , respectively. 
• Strengthened problem ( P | C ) denotes the problem instance P af- 

ter applying a set of constrains (cuts) in C . 

With regard to x̄ , we further define the following sets: 

• J 0 ( ̄x ) = { j| j ∈ N, ̄x j is nonbasic and x̄ j = 0 } denotes the index 

set of nonbasic variables with value 0. 
• J 1 ( ̄x ) = { j| j ∈ N, ̄x j is nonbasic and x̄ j = 1 } denotes the index 

set of nonbasic variables with value 1. 
• J( ̄x ) = J 0 ( ̄x ) ∪ J 1 ( ̄x ) includes the indices of all nonbasic vari- 

ables in x̄ . 
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