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a b s t r a c t 

In the Generalized Independent Set Problem, we are given a graph, a revenue for each vertex, and a set of 

removable edges with associated removal costs, and we seek to find an independent set that maximizes 

the net benefit, i.e., the difference between the revenues collected for the vertices in the independent set 

and the costs incurred for any removal of edges with both endpoints in the independent set. We study 

the polyhedron associated with a 0–1 linear programming formulation of the Generalized Independent 

Set Problem, deriving a number of facet-inducing inequalities, and we develop linear programming based 

heuristics to obtain high-quality solutions in a short amount of time. We also develop a heuristic method 

based on an unconstrained 0–1 quadratic programming formulation of the Generalized Independent Set 

Problem. In an extensive computational study, we assess the performance of these heuristics in terms of 

quality and efficiency. The best heuristic is then used to produce an initial solution for a branch-and-cut 

algorithm which uses some of the proposed facet-inducing inequalities. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

Let G = (V, E) be a graph with vertex set V and edge set E = 

E 1 ∪ E 2 , where E 1 is a set of non-removable edges and E 2 is a set 

of removable edges. A revenue w i > 0 is associated with each ver- 

tex i ∈ V , and a cost c ij > 0 is associated with each removable edge 

( i , j ) ∈ E 2 . The goal is to find an independent set, i.e., a set of ver- 

tices such that no two vertices in the set are adjacent, that maxi- 

mizes the difference between the total revenue associated with the 

vertices in the set and the total cost associated with the removal 

of edges with both endpoints in the set. 

By assigning a zero cost to non-existing edges and by assign- 

ing an appropriately chosen large cost to non-removable edges, 

the problem can be seen to be equivalent to the Generalized Inde- 

pendent Set Problem (GISP) introduced by Hochbaum and Pathria 

(1997) in the context of forest management and harvesting. The 

authors consider a setting in which a forest is partitioned into cells 

and the problem is to decide which cells to harvest and which cells 

to leave unharvested. More specifically, a benefit is associated with 

harvesting a cell and a penalty is associated with harvesting ad- 

jacent cells. For a setting in which the cells of the forest can be 
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represented with a bipartite graph, the authors present an efficient 

solution algorithm based on network flow methods. Additional re- 

sults on GISP (as well as on a number of other combinatorial opti- 

mization problems) can be found in Hochbaum (2004) . 

More recently, Kochenberger, Alidaee, Glover, and Wang 

(2007) have proposed an unconstrained binary quadratic program- 

ming (UBQP) formulation for the GISP. The formulation has the ad- 

vantage that it does not require (binary) variables associated with 

the removable edges, but only (binary) variables associated with 

the vertices. As the number of vertices is typically much smaller 

than the number of removable edges, the resulting formulation is 

relatively small, but, of course, comes at a price: a quadratic rather 

than linear objective function. The authors propose a tabu search 

algorithm that exploits the fact that all 0–1 vectors represent fea- 

sible solutions (although some with very high cost - representing 

the inclusion of vertices in the independent set that are connected 

by a non-removable edge) and demonstrate its effectiveness with 

a set of computational experiments using instances of varying size 

and density. 

To the best of our knowledge, these are the only papers 

discussing GISP. Of course, a vast literature exists on the find- 

ing a maximum weight independent set in a graph, which is 

a special case of GISP. We refer interested readers to Mannino 

and Sassano (1994) , Rebennack (2009) , Warrier, Wilhelm, War- 

ren, and Hicks (2005) , Xiao and Nagamochi (2013) for exact al- 

gorithms, and to Bonomo, Durán, Lin, and Szwarcfiter (2006) , 
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Burer, Monteiro, and Zhang (2002) , Cogis and Thierry (2005) , Feo, 

Resende, and Smith (1994) , Lehmann, Kaufmann, Steigele, and 

Nieselt (20 06) , Marchiori (20 02) , Pelillo (20 09) for heuristic meth- 

ods and polynomial-time algorithms for special classes of graphs. 

In this paper, we provide the first polyhedral analysis of GISP. 

We show that the polyhedron associated with a 0–1 linear pro- 

gramming formulation of GISP is full-dimensional, and study sev- 

eral classes of valid inequalities, all natural generalizations of valid 

inequalities for the traditional maximum weight independent set 

problem. In many cases, we identify conditions under which these 

inequalities are facet-inducing. In addition to the polyhedral analy- 

sis, we develop linear programming (LP) based heuristics in which 

the LP relaxation is strengthened by adding some of the valid in- 

equalities derived. We also develop a meta-heuristic approach ex- 

ploiting the binary quadratic programming formulation of GISP. 

That method is an adaptation of the probabilistic GRASP - tabu 

search algorithm proposed in Wang, Lü, Glover, and Hao (2013) . 

We analyze the performance of all the heuristic methods on a large 

set of randomly generated instances by comparing their solutions 

to the one obtained by an integer programming (IP) solver (CPLEX 

12.5.1) within one hour using a formulation enhanced with some 

randomly generated valid inequalities. 

We solve instances with up to 400 vertices, with more than 

70,0 0 0 edges, and with different fractions of removable edges. The 

computational results demonstrate that all the proposed heuris- 

tics are effective in producing high-quality solutions, but that the 

heuristic based on the unconstrained binary quadratic program- 

ming formulation is by far the most efficient. As part of our com- 

putational investigation, we also obtain a better understanding 

of the problem characteristics that impact the difficulty of GISP 

instances. 

It is worth noting that unconstrained binary quadratic program- 

ming formulations can be used to model a wide range of com- 

binatorial optimization problems in different application domains 

(a review can be found in Kochenberger, Glover, Alidaee, & Rego 

(2004) ). Various metaheuristics have been developed that can find 

near-optimal solutions to large UBQP instances in a short amount 

of time and, therefore, can provide a valid alternative to methods 

based on 0–1 linear programming formulations. On the other hand, 

existing exact solution methods for UBQP become computationally 

prohibitive even for relatively small instances and, therefore, exact 

methods based on 0–1 linear programming formulations still have 

a computational edge. Although the development of a full-blown 

exact method for GISP is out of the scope of the present paper, 

we conduct a small experiment with a branch-and-cut algorithm 

based on the 0–1 linear programming formulation and that uses 

some of the proposed valid inequalities, this time selected using a 

high-quality feasible solution produced by the GRASP - tabu search 

heuristic. 

The remainder of the paper is organized as follows. In Section 2 , 

we present a 0–1 linear programming formulation as well as an 

unconstrained binary quadratic programming formulation for GISP. 

In Section 3 , we discuss the results of our polyhedral analysis. 

In Section 4 , we introduce the LP-based heuristics, the GRASP - 

tabu search heuristic, and a branch-and-cut algorithm, whereas, 

in Section 6 , we analyze their performance on a wide set of 

well-structured instances. Finally, in Section 7 , we provide some 

concluding remarks and indicate possible directions for future 

research. 

2. Problem formulations 

To formulate GISP, we introduce binary variables x i for i ∈ V , 

indicating whether vertex i is selected and the associated revenue 

is collected ( x i = 1 ) or not ( x i = 0 ), and binary variables y ij for ( i , j ) 

∈ E 2 , indicating whether edge ( i , j ) is removed and the associated 

cost incurred ( y i j = 1 ) or not ( y i j = 0 ). With these variables, GISP 

can be formulated as follows: 

max 
∑ 

i ∈ V 
w i x i −

∑ 

(i, j) ∈ E 2 
c i j y i j (1) 

subject to x i + x j ≤ 1 (i, j) ∈ E 1 (2) 

x i + x j − y i j ≤ 1 (i, j) ∈ E 2 (3) 

x i ∈ { 0 , 1 } i ∈ V (4) 

y i j ∈ { 0 , 1 } (i, j) ∈ E 2 . (5) 

The objective function (1) maximizes the net benefit, i.e., the 

difference between the sum of the revenues of the selected ver- 

tices and the sum of the costs of removed edges. Constraints 

(2) are the classical independent set constraints, capturing the re- 

striction that vertices linked by a fixed edge cannot be in an inde- 

pendent set together, whereas constraints (3) capture the fact that 

vertices linked by a removable edge can be in an independent set 

together only if that edge is removed. Finally, constraints (4) and 

(5) define the integrality conditions. 

To formulate GISP as an unconstrained binary quadratic pro- 

gram, we again use binary variables x i for i ∈ V to indicate whether 

vertex i is selected ( x i = 1 ) or not ( x i = 0 ), but capture the removal 

of an edge ( i , j ) ∈ E by the product of the variables associated with 

the nodes at its end points, i.e., x i x j . More specifically, 

max 
∑ 

i ∈ V 
w i x i −

∑ 

(i, j) ∈ E 
c i j x i x j 

subject to x i ∈ { 0 , 1 } i ∈ V, 

where c ij is set to a sufficiently large value for edges ( i , j ) ∈ E 1 to 

ensure that the vertices at the end points of these edges will never 

be selected together in an optimal solution. 

3. Polyhedral analysis 

Let P be the convex hull of all feasible solutions to the 0–1 lin- 

ear programming formulation of GISP, i.e., 

P = con v { (x, y ) ∈ Z 

| V | + | E 2 | 
+ | (x, y ) satisfies (2) , (3) , x i ≤ 1 , i ∈ V, 

and y i j ≤ 1 , (i, j) ∈ E 2 } . 
Proposition 1. The GISP polyhedron P is full-dimensional, i.e., 

dim (P ) = | V | + | E 2 | . 
Proof. The following | V | + | E 2 | + 1 feasible points are trivially 

affinely independent: 

• For each i ∈ V , the point with x i = 1 and all other variables 

equal to zero. 
• For each ( i , j ) ∈ E 2 , the point with y i j = 1 and all other variables 

equal to zero. 
• The zero vector (i.e., all variables equal to zero). �

Let S ⊆ V be a subset of vertices. We define E 2 (S) = { (i, j) ∈ 

E 2 : i, j ∈ S} and δ2 (S) = { (i, j) ∈ E 2 : i ∈ S, j / ∈ S} to be the set of re- 

movable edges with both endpoints in S and the cut set with only 

one endpoint in S , respectively. Let �1 ( i ) be the set of vertices 

connected to i with a fixed edge and let �2 ( i ) be the set of ver- 

tices connected to i with a removable edge, i.e., �1 (i ) = { j ∈ V : 

(i, j) ∈ E 1 } and �2 (i ) = { j ∈ V : (i, j) ∈ E 2 } . Thus, | �1 ( i )| and | �2 ( i )| 

give the degree of vertex i with respect to edge set E 1 and E 2 , re- 

spectively. The overall degree | �( i )| of vertex i is | �1 (i ) | + | �2 (i ) | . 
Finally, we let Ē denote the set of edges in the complement graph 

Ḡ , i.e., the graph with the same set of vertices, but with the edges 

that are not in E . 
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