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a b s t r a c t 

We consider the 0/1 Collapsing Knapsack Problem (CKP) and a generalization involving more than a ca- 

pacity constraint (M-CKP). We propose a novel ILP formulation and a problem reduction procedure to- 

gether with an exact approach. The proposed approach compares favorably to the methods available in 

the literature and manages to solve to optimality very large size instances particularly for CKP and 2-CKP. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

The 0/1 Collapsing Knapsack Problem (CKP) can be seen as a 

generalization of the standard 0/1 Knapsack Problem (KP) where 

the capacity of the constraint is not a scalar but a non-increasing 

function of the number of included items, namely, it is inversely 

related to the number of items placed inside the knapsack. While 

KP has been widely studied, CKP has gained less attention. Accord- 

ing to Posner and Guignard (1978) , CKP has wide applications such 

as in satellite communication and time-sharing computer systems, 

namely in problems where a structural overhead is induced by the 

number of items or users considered. In a satellite communication, 

a correct transmission on the band requires that the parts of the 

band dedicated to each user must be separated by proper gaps. In 

time–sharing computer systems, just the adding of a process while 

other processes are running causes an overhead of the processing 

capabilities. Another application of interest is the transportation of 

fragile items, which may require additional coverings if they are 

transported with other items. These and similar real-life applica- 

tions can be modeled as a Collapsing Knapsack Problems where 

the non-increasing function of the capacity represents the over- 

head of the resources produced by the number of items included 

in a solution. 

CKP was first introduced in Posner and Guignard (1978) , where 

an implicit enumeration algorithm was proposed. An exact algo- 

rithm making use of new upper and lower bounds was presented 
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in Fayard and Plateau (1994) . In Pferschy, Pisinger, and Woeginger 

(1997) , a pseudo-polynomial time dynamic programming approach 

was proposed together with a reduction scheme to the standard 

knapsack problem. An improved reduction scheme is proposed in 

Iida and Uno (2002) . Finally, an exact algorithm based on the par- 

titioning of the CKP into sub-problems was presented in Wu and 

Srikanthan (2006) . 

The contribution of the paper is twofold. On the one hand, we 

present a novel ILP formulation of CKP and an effective reduction 

procedure for restricting the solution space of the problem. We re- 

mark that our novel ILP formulation, despite its simplicity, provides 

a significant contribution for tackling the CKP since it makes pos- 

sible to exploit the potentials of the modern IP solvers. The pre- 

vious formulation of the problem is not linear and the reduction 

schemes to a standard KP illustrated in Pferschy et al. (1997) and 

Iida and Uno (2002) induce very large size coefficients that make 

the KP very difficult to solve in practice. 

On the other hand, we introduce an exact approach for CKP 

which is also extended to the multidimensional variant of CKP de- 

noted hereafter M-CKP (with M > 1 indicating the number of ca- 

pacity constraints). To the best of the authors’ knowledge, no work 

has been developed to tackle collapsing knapsack problems with 

more than one capacity constraint. We propose a new exact ap- 

proach that relies on the ILP formulation of CKP and on an original 

branching scheme that induces the solution of several KPs (with 

the additional constraint that the number of items in the knapsack 

is fixed) by exploiting the particular structure of CKP. The proposed 

approach is capable of solving to optimality all instances with up 

to 10 0,0 0 0 items within a time limit of 600 seconds, while in- 

stances tackled in the literature until now were limited to 10 0 0 

items in size. The exact approach is capable of solving to optimality 
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also 2-CKP in instances up to 10 0,0 0 0 items in reasonable time. For 

M-CKP with M = 3,4,5, the proposed approach is capable of solv- 

ing to optimality all instances with up to 120 0 0 , 150 0 and 10 0 0 

respectively within a time limit of 3600 seconds. 

The paper is organized as follows. In Section 2 , the new inte- 

ger linear programming formulation of the problem is provided 

together with its generalization to the multidimensional CKP. In 

Section 3 the reduction procedure is introduced. Section 4 is de- 

voted to the description of the proposed exact solution algorithm. 

In Section 5 , computational results for CKP and M-CKP are pre- 

sented. Section 6 concludes the paper with final remarks. 

2. ILP modeling of CKP and M-CKP 

In this section, we briefly recall the original formulation of CKP 

and we investigate the effectiveness of two schemes laid out in the 

literature for reducing CKP to the classical knapsack problem. After 

that, we present our novel ILP formulation and its extension to the 

multidimensional variant of the problem. 

2.1. A previous formulation of CKP 

According to Wu and Srikanthan (2006) , the 0/1 Collapsing 

Knapsack Problem (CKP) can be expressed as follows: 

maximize 

n ∑ 

i =1 

p i x i (1) 

subject to 

n ∑ 

i =1 

w i x i ≤ B 

( 

n ∑ 

i =1 

x i 

) 

(2) 

x i ∈ { 0 , 1 } ∀ i = 1 , . . . , n (3) 

where p i and w i , positive integers, denote profit and weight of each 

item i . Function B ( ·) is non-increasing over { 1 , 2 , . . . , n } , indicating 

the capacity of the knapsack. This implies that the capacity will 

decrease while the number of the items inserted into the knap- 

sack increases. Each binary variable x i indicates if item i is se- 

lected or not. CKP is known to be weakly NP-hard as it is pseudo- 

polynomially solvable ( Pferschy et al., 1997 ) and contains KP as 

special case (when function B ( ·) is a constant). Naively, according 

to model (1)–(3), one can enumerate all possible sub-problems by 

iteratively fixing the total number of items and taking the corre- 

sponding capacity value from the function B ( ·). Then, one can solve 

all the sub-problems and consider the best solution among them. 

This task corresponds for each sub-problem to solve a KP prob- 

lem with the additional constraint that the number of items in the 

knapsack is fixed, which is generally handled well by simply using 

a standard ILP solver. However, this approach is not expected to be 

effective as soon as the number of variables, and correspondingly 

the number of possible capacity values, increases. 

2.2. Reduction schemes of CKP to a standard KP 

In Pferschy et al. (1997) a reduction scheme of CKP to a pure KP 

is proposed. That reduction relies on doubling the number of vari- 

ables and introducing coefficients of very large size. The authors 

of Pferschy et al. (1997) , however, indicated that the presence of 

very large coefficients made those KP intractable in practice. In- 

deed, in Martello, Pisinger, and Toth (1999) , COMBO, the current 

state-of-the-art algorithm for KP, was limited to instances with up 

to 200 items only, as the generation of larger instances was not 

possible on the machine used by the authors. Preliminary compu- 

tational tests on that reformulation confirmed this fact. We con- 

sidered CKP instances with 10 0 0 items generated as the largest in- 

stances in Pferschy et al. (1997) . Then, we launched CPLEX 12.5 for 

solving the standard knapsack problem produced by the reduction 

scheme: a CPU time limit of 1200 seconds was not sufficient to 

reach the optimal solution. An improved reduction scheme is pro- 

posed in Iida and Uno (2002) . The scheme produces coefficients 

smaller than those in Pferschy et al. (1997) . We tested this scheme 

by CPLEX 12.5 as well. Such a scheme was able to solve to opti- 

mality the 10 0 0-item instances in few seconds but was not able 

to reach the optimum on instances with 20 0 0 items, within a CPU 

time limit of 1200 seconds. 

In the light of these considerations, the reduction schemes in 

the literature are not appealing in practice. We propose instead, 

in the following, a new ILP formulation of CKP and M-CKP that 

constitutes the basic element of the proposed solution approach. 

2.3. A novel ILP formulation 

It is possible to formulate explicitly function B ( ·) in CKP, by 

adding a new set of 0–1 variables and two constraints in order to 

deal with the non-increasing property of function B ( ·). Let us de- 

note by b j = B ( j) ( j = 1 , . . . , h ) the h (with h ≤ n ) possible capacity 

values associated with the sum of selected items x i . We introduce 

h 0–1 variables y j indicating whether a specific capacity value j is 

selected or not. Then, we have the following ILP model for CKP: 

maximize 

n ∑ 

i =1 

p i x i (4) 

subject to 

n ∑ 

i =1 

w i x i ≤
h ∑ 

j=1 

b j y j (5) 

h ∑ 

j=1 

y j = 1 (6) 

n ∑ 

i =1 

x i = 

h ∑ 

j=1 

jy j (7) 

x i ∈ { 0 , 1 } ∀ i = 1 , . . . , n (8) 

y j ∈ { 0 , 1 } ∀ j = 1 , . . . , h. (9) 

Constraint (5) links the weighted sum of the items to all possi- 

ble capacity values. Constraint (6) ensures that exactly one capac- 

ity value is selected. Constraint (7) relates an index j to the total 

number of items selected in the solution. In other words if a vari- 

able y j is selected, then we guarantee that the capacity value b j 
corresponds to the associated number of selected items. Finally in 

(8) and (9) variables x i and y j are defined as binary. 

We remark that a simple upper bound on the total number of 

the items present in the optimal solution can be straightforwardly 

computed. Let us denote by means of square brackets the set of 

weights sorted in nondecreasing order so that w [1] ≤ w [2] ≤ · · · ≤
w [ n ] . The following Property which is a reformulation of Proposi- 

tion 5 in Pferschy et al. (1997) holds. 

Property 1. (Proposition 5 in Pferschy et al. (1997) ) Let k ∗ = 

min { k | ∑ k 
j=1 w [ j] > b k } . Then, without loss of optimality, y l = 0 ∀ l ∈ 

[ k ∗, ..., h ] . 

From Property 1 , the following constraint is added without loss 

of generality to (namely the relevant variables are deleted from) 

model (4) –(9) . 

y l = 0 ∀ l ∈ [ k ∗, ..., h ] (10) 
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